@phdthesis{Haendler2016, author = {Haendler, Yair}, title = {Effects of embedded pronouns on relative clause processing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396883}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 186}, year = {2016}, abstract = {Difficulties with object relative clauses (ORC), as compared to subject relative clauses (SR), are widely attested across different languages, both in adults and in children. This SR-ORC asymmetry is reduced, or even eliminated, when the embedded constituent in the ORC is a pronoun, rather than a lexical noun phrase. The studies included in this thesis were designed to explore under what circumstances the pronoun facilitation occurs; whether all pronouns have the same effect; whether SRs are also affected by embedded pronouns; whether children perform like adults on such structures; and whether performance is related to cognitive abilities such as memory or grammatical knowledge. Several theoretical approaches that explain the pronoun facilitation in relative clauses are evaluated. The experimental data have been collected in three languages-German, Italian and Hebrew-stemming from both children and adults. In the German study (Chapter 2), ORCs with embedded 1st- or 3rd-person pronouns are compared to ORCs with an embedded lexical noun phrase. Eye-movement data from 5-year-old children show that the 1st-person pronoun facilitates processing, but not the 3rd-person pronoun. Moreover, children's performance is modulated by additive effects of their memory and grammatical skills. In the Italian study (Chapter 3), the 1st-person pronoun advantage over the 3rd-person pronoun is tested in ORCs and SRs that display a similar word order. Eye-movement data from 5-year-olds and adult controls and reading times data from adults are pitted against the outcome of a corpus analysis, showing that the 1st-/3rd-person pronoun asymmetry emerges in the two relative clause types to an equal extent. In the Hebrew study (Chapter 4), the goal is to test the effect of a special kind of pronoun-a non-referential arbitrary subject pronoun-on ORC comprehension, in the light of potential confounds in previous studies that used this pronoun. Data from a referent-identification task with 4- to 5-year-olds indicate that, when the experimental material is controlled, the non-referential pronoun does not necessarily facilitate ORC comprehension. Importantly, however, children have even more difficulties when the embedded constituent is a referential pronoun. The non-referentiality / referentiality asymmetry is emphasized by the relation between children's performance on the experimental task and their memory skills. Together, the data presented in this thesis indicate that sentence processing is not only driven by structural (or syntactic) factors, but also by discourse-related ones, like pronouns' referential properties or their discourse accessibility mechanism, which is defined as the level of ease or difficulty with which referents of pronouns are identified and retrieved from the discourse model. Although independent in essence, these structural and discourse factors can in some cases interact in a way that affects sentence processing. Moreover, both types of factors appear to be strongly related to memory. The data also support the idea that, from early on, children are sensitive to the same factors that affect adults' sentence processing, and that the processing strategies of both populations are qualitatively similar. In sum, this thesis suggests that a comprehensive theory of human sentence processing needs to account for effects that are due to both structural and discourse-related factors, which operate as a function of memory capacity.}, language = {en} } @phdthesis{Engelmann2016, author = {Engelmann, Felix}, title = {Toward an integrated model of sentence processing in reading}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100864}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 143}, year = {2016}, abstract = {In experiments investigating sentence processing, eye movement measures such as fixation durations and regression proportions while reading are commonly used to draw conclusions about processing difficulties. However, these measures are the result of an interaction of multiple cognitive levels and processing strategies and thus are only indirect indicators of processing difficulty. In order to properly interpret an eye movement response, one has to understand the underlying principles of adaptive processing such as trade-off mechanisms between reading speed and depth of comprehension that interact with task demands and individual differences. Therefore, it is necessary to establish explicit models of the respective mechanisms as well as their causal relationship with observable behavior. There are models of lexical processing and eye movement control on the one side and models on sentence parsing and memory processes on the other. However, no model so far combines both sides with explicitly defined linking assumptions. In this thesis, a model is developed that integrates oculomotor control with a parsing mechanism and a theory of cue-based memory retrieval. On the basis of previous empirical findings and independently motivated principles, adaptive, resource-preserving mechanisms of underspecification are proposed both on the level of memory access and on the level of syntactic parsing. The thesis first investigates the model of cue-based retrieval in sentence comprehension of Lewis \& Vasishth (2005) with a comprehensive literature review and computational modeling of retrieval interference in dependency processing. The results reveal a great variability in the data that is not explained by the theory. Therefore, two principles, 'distractor prominence' and 'cue confusion', are proposed as an extension to the theory, thus providing a more adequate description of systematic variance in empirical results as a consequence of experimental design, linguistic environment, and individual differences. In the remainder of the thesis, four interfaces between parsing and eye movement control are defined: Time Out, Reanalysis, Underspecification, and Subvocalization. By comparing computationally derived predictions with experimental results from the literature, it is investigated to what extent these four interfaces constitute an appropriate elementary set of assumptions for explaining specific eye movement patterns during sentence processing. Through simulations, it is shown how this system of in itself simple assumptions results in predictions of complex, adaptive behavior. In conclusion, it is argued that, on all levels, the sentence comprehension mechanism seeks a balance between necessary processing effort and reading speed on the basis of experience, task demands, and resource limitations. Theories of linguistic processing therefore need to be explicitly defined and implemented, in particular with respect to linking assumptions between observable behavior and underlying cognitive processes. The comprehensive model developed here integrates multiple levels of sentence processing that hitherto have only been studied in isolation. The model is made publicly available as an expandable framework for future studies of the interactions between parsing, memory access, and eye movement control.}, language = {en} }