@phdthesis{Weidling2016, author = {Weidling, Stefan}, title = {Neue Ans{\"a}tze zur Verbesserung der Fehlertoleranz gegen{\"u}ber transienten Fehlern in sequentiellen Schaltungen}, school = {Universit{\"a}t Potsdam}, pages = {XII, 181}, year = {2016}, language = {de} } @phdthesis{Semmo2016, author = {Semmo, Amir}, title = {Design and implementation of non-photorealistic rendering techniques for 3D geospatial data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99525}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 155}, year = {2016}, abstract = {Geospatial data has become a natural part of a growing number of information systems and services in the economy, society, and people's personal lives. In particular, virtual 3D city and landscape models constitute valuable information sources within a wide variety of applications such as urban planning, navigation, tourist information, and disaster management. Today, these models are often visualized in detail to provide realistic imagery. However, a photorealistic rendering does not automatically lead to high image quality, with respect to an effective information transfer, which requires important or prioritized information to be interactively highlighted in a context-dependent manner. Approaches in non-photorealistic renderings particularly consider a user's task and camera perspective when attempting optimal expression, recognition, and communication of important or prioritized information. However, the design and implementation of non-photorealistic rendering techniques for 3D geospatial data pose a number of challenges, especially when inherently complex geometry, appearance, and thematic data must be processed interactively. Hence, a promising technical foundation is established by the programmable and parallel computing architecture of graphics processing units. This thesis proposes non-photorealistic rendering techniques that enable both the computation and selection of the abstraction level of 3D geospatial model contents according to user interaction and dynamically changing thematic information. To achieve this goal, the techniques integrate with hardware-accelerated rendering pipelines using shader technologies of graphics processing units for real-time image synthesis. The techniques employ principles of artistic rendering, cartographic generalization, and 3D semiotics—unlike photorealistic rendering—to synthesize illustrative renditions of geospatial feature type entities such as water surfaces, buildings, and infrastructure networks. In addition, this thesis contributes a generic system that enables to integrate different graphic styles—photorealistic and non-photorealistic—and provide their seamless transition according to user tasks, camera view, and image resolution. Evaluations of the proposed techniques have demonstrated their significance to the field of geospatial information visualization including topics such as spatial perception, cognition, and mapping. In addition, the applications in illustrative and focus+context visualization have reflected their potential impact on optimizing the information transfer regarding factors such as cognitive load, integration of non-realistic information, visualization of uncertainty, and visualization on small displays.}, language = {en} } @phdthesis{Schindler2016, author = {Schindler, Sven}, title = {Honeypot Architectures for IPv6 Networks}, school = {Universit{\"a}t Potsdam}, pages = {164}, year = {2016}, language = {en} } @phdthesis{Saleh2016, author = {Saleh, Eyad}, title = {Securing Multi-tenant SaaS Environments}, school = {Universit{\"a}t Potsdam}, pages = {108}, year = {2016}, abstract = {Software-as-a-Service (SaaS) offers several advantages to both service providers and users. Service providers can benefit from the reduction of Total Cost of Ownership (TCO), better scalability, and better resource utilization. On the other hand, users can use the service anywhere and anytime, and minimize upfront investment by following the pay-as-you-go model. Despite the benefits of SaaS, users still have concerns about the security and privacy of their data. Due to the nature of SaaS and the Cloud in general, the data and the computation are beyond the users' control, and hence data security becomes a vital factor in this new paradigm. Furthermore, in multi-tenant SaaS applications, the tenants become more concerned about the confidentiality of their data since several tenants are co-located onto a shared infrastructure. To address those concerns, we start protecting the data from the provisioning process by controlling how tenants are being placed in the infrastructure. We present a resource allocation algorithm designed to minimize the risk of co-resident tenants called SecPlace. It enables the SaaS provider to control the resource (i.e., database instance) allocation process while taking into account the security of tenants as a requirement. Due to the design principles of the multi-tenancy model, tenants follow some degree of sharing on both application and infrastructure levels. Thus, strong security-isolation should be present. Therefore, we develop SignedQuery, a technique that prevents one tenant from accessing others' data. We use the Signing Concept to create a signature that is used to sign the tenant's request, then the server can verifies the signature and recognizes the requesting tenant, and hence ensures that the data to be accessed is belonging to the legitimate tenant. Finally, Data confidentiality remains a critical concern due to the fact that data in the Cloud is out of users' premises, and hence beyond their control. Cryptography is increasingly proposed as a potential approach to address such a challenge. Therefore, we present SecureDB, a system designed to run SQL-based applications over an encrypted database. SecureDB captures the schema design and analyzes it to understand the internal structure of the data (i.e., relationships between the tables and their attributes). Moreover, we determine the appropriate partialhomomorphic encryption scheme for each attribute where computation is possible even when the data is encrypted. To evaluate our work, we conduct extensive experiments with di↵erent settings. The main use case in our work is a popular open source HRM application, called OrangeHRM. The results show that our multi-layered approach is practical, provides enhanced security and isolation among tenants, and have a moderate complexity in terms of processing encrypted data.}, language = {en} } @phdthesis{Prasse2016, author = {Prasse, Paul}, title = {Pattern recognition for computer security}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100251}, school = {Universit{\"a}t Potsdam}, pages = {VI, 75}, year = {2016}, abstract = {Computer Security deals with the detection and mitigation of threats to computer networks, data, and computing hardware. This thesis addresses the following two computer security problems: email spam campaign and malware detection. Email spam campaigns can easily be generated using popular dissemination tools by specifying simple grammars that serve as message templates. A grammar is disseminated to nodes of a bot net, the nodes create messages by instantiating the grammar at random. Email spam campaigns can encompass huge data volumes and therefore pose a threat to the stability of the infrastructure of email service providers that have to store them. Malware -software that serves a malicious purpose- is affecting web servers, client computers via active content, and client computers through executable files. Without the help of malware detection systems it would be easy for malware creators to collect sensitive information or to infiltrate computers. The detection of threats -such as email-spam messages, phishing messages, or malware- is an adversarial and therefore intrinsically difficult problem. Threats vary greatly and evolve over time. The detection of threats based on manually-designed rules is therefore difficult and requires a constant engineering effort. Machine-learning is a research area that revolves around the analysis of data and the discovery of patterns that describe aspects of the data. Discriminative learning methods extract prediction models from data that are optimized to predict a target attribute as accurately as possible. Machine-learning methods hold the promise of automatically identifying patterns that robustly and accurately detect threats. This thesis focuses on the design and analysis of discriminative learning methods for the two computer-security problems under investigation: email-campaign and malware detection. The first part of this thesis addresses email-campaign detection. We focus on regular expressions as a syntactic framework, because regular expressions are intuitively comprehensible by security engineers and administrators, and they can be applied as a detection mechanism in an extremely efficient manner. In this setting, a prediction model is provided with exemplary messages from an email-spam campaign. The prediction model has to generate a regular expression that reveals the syntactic pattern that underlies the entire campaign, and that a security engineers finds comprehensible and feels confident enough to use the expression to blacklist further messages at the email server. We model this problem as two-stage learning problem with structured input and output spaces which can be solved using standard cutting plane methods. Therefore we develop an appropriate loss function, and derive a decoder for the resulting optimization problem. The second part of this thesis deals with the problem of predicting whether a given JavaScript or PHP file is malicious or benign. Recent malware analysis techniques use static or dynamic features, or both. In fully dynamic analysis, the software or script is executed and observed for malicious behavior in a sandbox environment. By contrast, static analysis is based on features that can be extracted directly from the program file. In order to bypass static detection mechanisms, code obfuscation techniques are used to spread a malicious program file in many different syntactic variants. Deobfuscating the code before applying a static classifier can be subjected to mostly static code analysis and can overcome the problem of obfuscated malicious code, but on the other hand increases the computational costs of malware detection by an order of magnitude. In this thesis we present a cascaded architecture in which a classifier first performs a static analysis of the original code and -based on the outcome of this first classification step- the code may be deobfuscated and classified again. We explore several types of features including token \$n\$-grams, orthogonal sparse bigrams, subroutine-hashings, and syntax-tree features and study the robustness of detection methods and feature types against the evolution of malware over time. The developed tool scans very large file collections quickly and accurately. Each model is evaluated on real-world data and compared to reference methods. Our approach of inferring regular expressions to filter emails belonging to an email spam campaigns leads to models with a high true-positive rate at a very low false-positive rate that is an order of magnitude lower than that of a commercial content-based filter. Our presented system -REx-SVMshort- is being used by a commercial email service provider and complements content-based and IP-address based filtering. Our cascaded malware detection system is evaluated on a high-quality data set of almost 400,000 conspicuous PHP files and a collection of more than 1,00,000 JavaScript files. From our case study we can conclude that our system can quickly and accurately process large data collections at a low false-positive rate.}, language = {en} } @phdthesis{Niess2016, author = {Nieß, G{\"u}nther}, title = {Modellierung und Erkennung von technischen Fehlern mittels linearer und nichtlinearer Codes}, school = {Universit{\"a}t Potsdam}, pages = {V, 97}, year = {2016}, language = {de} } @phdthesis{Mueller2016, author = {M{\"u}ller, Stephan Heinz}, title = {Aggregates Caching for Enterprise Applications}, school = {Universit{\"a}t Potsdam}, pages = {167}, year = {2016}, abstract = {The introduction of columnar in-memory databases, along with hardware evolution, has made the execution of transactional and analytical enterprise application workloads on a single system both feasible and viable. Yet, we argue that executing analytical aggregate queries directly on the transactional data can decrease the overall system performance. Despite the aggregation capabilities of columnar in-memory databases, the direct access to records of a materialized aggregate is always more efficient than aggregating on the fly. The traditional approach to materialized aggregates, however, introduces significant overhead in terms of materialized view selection, maintenance, and exploitation. When this overhead is handled by the application, it increases the application complexity, and can slow down the transactional throughput of inserts, updates, and deletes. In this thesis, we motivate, propose, and evaluate the aggregate cache, a materialized aggregate engine in the main-delta architecture of a columnar in-memory database that provides efficient means to handle costly aggregate queries of enterprise applications. For our design, we leverage the specifics of the main-delta architecture that separates a table into a main and delta partition. The central concept is to only cache the partial aggregate query result as defined on the main partition of a table, because the main partition is relatively stable as records are only inserted into the delta partition. We contribute by proposing incremental aggregate maintenance and query compensation techniques for mixed workloads of enterprise applications. In addition, we introduce aggregate profit metrics that increase the likelihood of persisting the most profitable aggregates in the aggregate cache. Query compensation and maintenance of materialized aggregates based on joins of multiple tables is expensive due to the partitioned tables in the main-delta architecture. Our analysis of enterprise applications has revealed several data schema and workload patterns. This includes the observation that transactional data is persisted in header and item tables, whereas in many cases, the insertion of related header and item records is executed in a single database transaction. We contribute by proposing an approach to transport these application object semantics to the database system and optimize the query processing using the aggregate cache by applying partition pruning and predicate pushdown techniques. For the experimental evaluation, we propose the FICO benchmark that is based on data from a productive ERP system with extracted mixed workloads. Our evaluation reveals that the aggregate cache can accelerate the execution of aggregate queries up to a factor of 60 whereas the speedup highly depends on the number of aggregated records in the main and delta partitions. In mixed workloads, the proposed aggregate maintenance and query compensation techniques perform up to an order of magnitude better than traditional materialized aggregate maintenance approaches. The introduced aggregate profit metrics outperform existing costbased metrics by up to 20\%. Lastly, the join pruning and predicate pushdown techniques can accelerate query execution in the aggregate cache in the presence of multiple partitioned tables by up to an order of magnitude.}, language = {en} } @phdthesis{Mueller2016, author = {Mueller, Stefanie}, title = {Interacting with personal fabrication devices}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100908}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 108}, year = {2016}, abstract = {Personal fabrication tools, such as 3D printers, are on the way of enabling a future in which non-technical users will be able to create custom objects. However, while the hardware is there, the current interaction model behind existing design tools is not suitable for non-technical users. Today, 3D printers are operated by fabricating the object in one go, which tends to take overnight due to the slow 3D printing technology. Consequently, the current interaction model requires users to think carefully before printing as every mistake may imply another overnight print. Planning every step ahead, however, is not feasible for non-technical users as they lack the experience to reason about the consequences of their design decisions. In this dissertation, we propose changing the interaction model around personal fabrication tools to better serve this user group. We draw inspiration from personal computing and argue that the evolution of personal fabrication may resemble the evolution of personal computing: Computing started with machines that executed a program in one go before returning the result to the user. By decreasing the interaction unit to single requests, turn-taking systems such as the command line evolved, which provided users with feedback after every input. Finally, with the introduction of direct-manipulation interfaces, users continuously interacted with a program receiving feedback about every action in real-time. In this dissertation, we explore whether these interaction concepts can be applied to personal fabrication as well. We start with fabricating an object in one go and investigate how to tighten the feedback-cycle on an object-level: We contribute a method called low-fidelity fabrication, which saves up to 90\% fabrication time by creating objects as fast low-fidelity previews, which are sufficient to evaluate key design aspects. Depending on what is currently being tested, we propose different conversions that enable users to focus on different parts: faBrickator allows for a modular design in the early stages of prototyping; when users move on WirePrint allows quickly testing an object's shape, while Platener allows testing an object's technical function. We present an interactive editor for each technique and explain the underlying conversion algorithms. By interacting on smaller units, such as a single element of an object, we explore what it means to transition from systems that fabricate objects in one go to turn-taking systems. We start with a 2D system called constructable: Users draw with a laser pointer onto the workpiece inside a laser cutter. The drawing is captured with an overhead camera. As soon as the the user finishes drawing an element, such as a line, the constructable system beautifies the path and cuts it--resulting in physical output after every editing step. We extend constructable towards 3D editing by developing a novel laser-cutting technique for 3D objects called LaserOrigami that works by heating up the workpiece with the defocused laser until the material becomes compliant and bends down under gravity. While constructable and LaserOrigami allow for fast physical feedback, the interaction is still best described as turn-taking since it consists of two discrete steps: users first create an input and afterwards the system provides physical output. By decreasing the interaction unit even further to a single feature, we can achieve real-time physical feedback: Input by the user and output by the fabrication device are so tightly coupled that no visible lag exists. This allows us to explore what it means to transition from turn-taking interfaces, which only allow exploring one option at a time, to direct manipulation interfaces with real-time physical feedback, which allow users to explore the entire space of options continuously with a single interaction. We present a system called FormFab, which allows for such direct control. FormFab is based on the same principle as LaserOrigami: It uses a workpiece that when warmed up becomes compliant and can be reshaped. However, FormFab achieves the reshaping not based on gravity, but through a pneumatic system that users can control interactively. As users interact, they see the shape change in real-time. We conclude this dissertation by extrapolating the current evolution into a future in which large numbers of people use the new technology to create objects. We see two additional challenges on the horizon: sustainability and intellectual property. We investigate sustainability by demonstrating how to print less and instead patch physical objects. We explore questions around intellectual property with a system called Scotty that transfers objects without creating duplicates, thereby preserving the designer's copyright.}, language = {en} } @phdthesis{Koehlmann2016, author = {K{\"o}hlmann, Wiebke}, title = {Zug{\"a}nglichkeit virtueller Klassenzimmer f{\"u}r Blinde}, publisher = {Logos}, address = {Berlin}, isbn = {978-3-8325-4273-3}, pages = {i-x, 310, i-clxxvi}, year = {2016}, abstract = {E-Learning-Anwendungen bieten Chancen f{\"u}r die gesetzlich vorgeschriebene Inklusion von Lernenden mit Beeintr{\"a}chtigungen. Die gleichberechtigte Teilhabe von blinden Lernenden an Veranstaltungen in virtuellen Klassenzimmern ist jedoch durch den synchronen, multimedialen Charakter und den hohen Informationsumfang dieser L{\"o}sungen kaum m{\"o}glich. Die vorliegende Arbeit untersucht die Zug{\"a}nglichkeit virtueller Klassenzimmer f{\"u}r blinde Nutzende, um eine m{\"o}glichst gleichberechtigte Teilhabe an synchronen, kollaborativen Lernszenarien zu erm{\"o}glichen. Im Rahmen einer Produktanalyse werden dazu virtuelle Klassenzimmer auf ihre Zug{\"a}nglichkeit und bestehende Barrieren untersucht und Richtlinien f{\"u}r die zug{\"a}ngliche Gestaltung von virtuellen Klassenzimmern definiert. Anschließend wird ein alternatives Benutzungskonzept zur Darstellung und Bedienung virtueller Klassenzimmer auf einem zweidimensionalen taktilen Braille-Display entwickelt, um eine m{\"o}glichst gleichberechtigte Teilhabe blinder Lernender an synchronen Lehrveranstaltungen zu erm{\"o}glichen. Nach einer ersten Evaluation mit blinden Probanden erfolgt die prototypische Umsetzung des Benutzungskonzepts f{\"u}r ein Open-Source-Klassenzimmer. Die abschließende Evaluation der prototypischen Umsetzung zeigt die Verbesserung der Zug{\"a}nglichkeit von virtuellen Klassenzimmern f{\"u}r blinde Lernende unter Verwendung eines taktilen Fl{\"a}chendisplays und best{\"a}tigt die Wirksamkeit der im Rahmen dieser Arbeit entwickelten Konzepte.}, language = {de} } @phdthesis{Kilic2016, author = {Kilic, Mukayil}, title = {Vernetztes Pr{\"u}fen von elektronischen Komponenten {\"u}ber das Internet}, school = {Universit{\"a}t Potsdam}, pages = {104, XVI}, year = {2016}, language = {de} }