@phdthesis{Cattania2015, author = {Cattania, Camilla}, title = {Improvement of aftershock models based on Coulomb stress changes and rate-and-state dependent friction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87097}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 123}, year = {2015}, abstract = {Earthquake clustering has proven the most useful tool to forecast changes in seismicity rates in the short and medium term (hours to months), and efforts are currently being made to extend the scope of such models to operational earthquake forecasting. The overarching goal of the research presented in this thesis is to improve physics-based earthquake forecasts, with a focus on aftershock sequences. Physical models of triggered seismicity are based on the redistribution of stresses in the crust, coupled with the rate-and-state constitutive law proposed by Dieterich to calculate changes in seismicity rate. This type of models are known as Coulomb- rate and-state (CRS) models. In spite of the success of the Coulomb hypothesis, CRS models typically performed poorly in comparison to statistical ones, and they have been underepresented in the operational forecasting context. In this thesis, I address some of these issues, and in particular these questions: (1) How can we realistically model the uncertainties and heterogeneity of the mainshock stress field? (2) What is the effect of time dependent stresses in the postseismic phase on seismicity? I focus on two case studies from different tectonic settings: the Mw 9.0 Tohoku megathrust and the Mw 6.0 Parkfield strike slip earthquake. I study aleatoric uncertainties using a Monte Carlo method. I find that the existence of multiple receiver faults is the most important source of intrinsic stress heterogeneity, and CRS models perform better when this variability is taken into account. Epistemic uncertainties inherited from the slip models also have a significant impact on the forecast, and I find that an ensemble model based on several slip distributions outperforms most individual models. I address the role of postseismic stresses due to aseismic slip on the mainshock fault (afterslip) and to the redistribution of stresses by previous aftershocks (secondary triggering). I find that modeling secondary triggering improves model performance. The effect of afterslip is less clear, and difficult to assess for near-fault aftershocks due to the large uncertainties of the afterslip models. Off-fault events, on the other hand, are less sensitive to the details of the slip distribution: I find that following the Tohoku earthquake, afterslip promotes seismicity in the Fukushima region. To evaluate the performance of the improved CRS models in a pseudo-operational context, I submitted them for independent testing to a collaborative experiment carried out by CSEP for the 2010-2012 Canterbury sequence. Preliminary results indicate that physical models generally perform well compared to statistical ones, suggesting that CRS models may have a role to play in the future of operational forecasting. To facilitate efforts in this direction, and to enable future studies of earthquake triggering by time dependent processes, I have made the code open source. In the final part of this thesis I summarize the capabilities of the program and outline technical aspects regarding performance and parallelization strategies.}, language = {en} } @phdthesis{Ramisch2015, author = {Ramisch, Arne}, title = {Lake system development on the northern Tibetan Plateau during the last ~ 12 ka}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2015}, language = {en} } @phdthesis{Rach2015, author = {Rach, Oliver}, title = {Qualitative and quantitative estimations of hydrological changes in western Europe during abrupt climate shifts using lipid biomarker derived stable hydrogen isotope records}, school = {Universit{\"a}t Potsdam}, pages = {217}, year = {2015}, language = {en} } @phdthesis{Mielke2015, author = {Mielke, Christian}, title = {Multi- and Hyperspectral Spaceborne Remote Sensing for Mine Waste and Mineral Deposit Characterization, new Applications to the EnMAP and Sentinel-2 Missions}, school = {Universit{\"a}t Potsdam}, pages = {140}, year = {2015}, language = {en} } @phdthesis{Luft2015, author = {Luft, Laura Charlotte}, title = {Bridging the gap between science and nature conservation practice}, school = {Universit{\"a}t Potsdam}, pages = {173}, year = {2015}, language = {en} } @phdthesis{Bora2015, author = {Bora, Sanjay Singh}, title = {Regionally adaptable ground-motion Prediction Equations (GMPEs) for seismic hazard analysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88806}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 138}, year = {2015}, abstract = {Adjustment of empirically derived ground motion prediction equations (GMPEs), from a data- rich region/site where they have been derived to a data-poor region/site, is one of the major challenges associated with the current practice of seismic hazard analysis. Due to the fre- quent use in engineering design practices the GMPEs are often derived for response spectral ordinates (e.g., spectral acceleration) of a single degree of freedom (SDOF) oscillator. The functional forms of such GMPEs are based upon the concepts borrowed from the Fourier spectral representation of ground motion. This assumption regarding the validity of Fourier spectral concepts in the response spectral domain can lead to consequences which cannot be explained physically. In this thesis, firstly results from an investigation that explores the relationship between Fourier and response spectra, and implications of this relationship on the adjustment issues of GMPEs, are presented. The relationship between the Fourier and response spectra is explored by using random vibration theory (RVT), a framework that has been extensively used in earthquake engineering, for instance within the stochastic simulation framework and in the site response analysis. For a 5\% damped SDOF oscillator the RVT perspective of response spectra reveals that no one-to-one correspondence exists between Fourier and response spectral ordinates except in a limited range (i.e., below the peak of the response spectra) of oscillator frequencies. The high oscillator frequency response spectral ordinates are dominated by the contributions from the Fourier spectral ordinates that correspond to the frequencies well below a selected oscillator frequency. The peak ground acceleration (PGA) is found to be related with the integral over the entire Fourier spectrum of ground motion which is in contrast to the popularly held perception that PGA is a high-frequency phenomenon of ground motion. This thesis presents a new perspective for developing a response spectral GMPE that takes the relationship between Fourier and response spectra into account. Essentially, this frame- work involves a two-step method for deriving a response spectral GMPE: in the first step two empirical models for the FAS and for a predetermined estimate of duration of ground motion are derived, in the next step, predictions from the two models are combined within the same RVT framework to obtain the response spectral ordinates. In addition to that, a stochastic model based scheme for extrapolating the individual acceleration spectra beyond the useable frequency limits is also presented. To that end, recorded acceleration traces were inverted to obtain the stochastic model parameters that allow making consistent extrapola- tion in individual (acceleration) Fourier spectra. Moreover an empirical model, for a dura- tion measure that is consistent within the RVT framework, is derived. As a next step, an oscillator-frequency-dependent empirical duration model is derived that allows obtaining the most reliable estimates of response spectral ordinates. The framework of deriving the response spectral GMPE presented herein becomes a self-adjusting model with the inclusion of stress parameter (∆σ) and kappa (κ0) as the predictor variables in the two empirical models. The entire analysis of developing the response spectral GMPE is performed on recently compiled RESORCE-2012 database that contains recordings made from Europe, the Mediterranean and the Middle East. The presented GMPE for response spectral ordinates should be considered valid in the magnitude range of 4 ≤ MW ≤ 7.6 at distances ≤ 200 km.}, language = {en} } @phdthesis{Wang2015, author = {Wang, Rong}, title = {Late quaternary climate and environmental variability inferred from terrigenous sediment records in China and the North Pacific/Bering Sea}, school = {Universit{\"a}t Potsdam}, pages = {91}, year = {2015}, language = {en} } @phdthesis{Mulyukova2015, author = {Mulyukova, Elvira}, title = {Stability of the large low shear velocity provinces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-82228}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2015}, abstract = {We study segregation of the subducted oceanic crust (OC) at the core mantle boundary and its ability to accumulate and form large thermochemical piles (such as the seismically observed Large Low Shear Velocity Provinces - LLSVPs). Our high-resolution numerical simulations suggest that the longevity of LLSVPs for up to three billion years, and possibly longer, can be ensured by a balance in the rate of segregation of high-density OC-material to the CMB, and the rate of its entrainment away from the CMB by mantle upwellings. For a range of parameters tested in this study, a large-scale compositional anomaly forms at the CMB, similar in shape and size to the LLSVPs. Neutrally buoyant thermochemical piles formed by mechanical stirring - where thermally induced negative density anomaly is balanced by the presence of a fraction of dense anomalous material - best resemble the geometry of LLSVPs. Such neutrally buoyant piles tend to emerge and survive for at least 3Gyr in simulations with quite different parameters. We conclude that for a plausible range of values of density anomaly of OC material in the lower mantle - it is likely that it segregates to the CMB, gets mechanically mixed with the ambient material, and forms neutrally buoyant large scale compositional anomalies similar in shape to the LLSVPs. We have developed an efficient FEM code with dynamically adaptive time and space resolution, and marker-in-cell methodology. This enabled us to model thermochemical mantle convection at realistically high convective vigor, strong thermally induced viscosity variations, and long term evolution of compositional fields.}, language = {en} } @phdthesis{Karo2015, author = {Karo, Nihad Majeed}, title = {Metamorphic evolution of the Northern Zagros Suture Zone (NZSZ)}, school = {Universit{\"a}t Potsdam}, pages = {127}, year = {2015}, language = {en} } @phdthesis{Abon2015, author = {Abon, Catherine Cristobal}, title = {Radar-based rainfall retrieval for flood forecasting in a meso-scale catchment}, school = {Universit{\"a}t Potsdam}, pages = {93 S.}, year = {2015}, language = {en} }