@phdthesis{Knoll2013, author = {Knoll, Lisa Joanna}, title = {When the hedgehog kisses the frog : a functional and structural investigatin of syntactic processing in the developing brain}, series = {MPI series in human cognitive and brain sciences}, volume = {150}, journal = {MPI series in human cognitive and brain sciences}, publisher = {MPI}, address = {Leipzig}, isbn = {978-3-941504-34-9}, pages = {157 S.}, year = {2013}, language = {en} } @phdthesis{Fuchs2013, author = {Fuchs, Sven}, title = {Well-log based determination of rock thermal conductivity in the North German Basin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67801}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In sedimentary basins, rock thermal conductivity can vary both laterally and vertically, thus altering the basin's thermal structure locally and regionally. Knowledge of the thermal conductivity of geological formations and its spatial variations is essential, not only for quantifying basin evolution and hydrocarbon maturation processes, but also for understanding geothermal conditions in a geological setting. In conjunction with the temperature gradient, thermal conductivity represents the basic input parameter for the determination of the heat-flow density; which, in turn, is applied as a major input parameter in thermal modeling at different scales. Drill-core samples, which are necessary to determine thermal properties by laboratory measurements, are rarely available and often limited to previously explored reservoir formations. Thus, thermal conductivities of Mesozoic rocks in the North German Basin (NGB) are largely unknown. In contrast, geophysical borehole measurements are often available for the entire drilled sequence. Therefore, prediction equations to determine thermal conductivity based on well-log data are desirable. In this study rock thermal conductivity was investigated on different scales by (1) providing thermal-conductivity measurements on Mesozoic rocks, (2) evaluating and improving commonly applied mixing models which were used to estimate matrix and pore-filled rock thermal conductivities, and (3) developing new well-log based equations to predict thermal conductivity in boreholes without core control. Laboratory measurements are performed on sedimentary rock of major geothermal reservoirs in the Northeast German Basin (NEGB) (Aalenian, Rhaethian-Liassic, Stuttgart Fm., and Middle Buntsandstein). Samples are obtained from eight deep geothermal wells that approach depths of up to 2,500 m. Bulk thermal conductivities of Mesozoic sandstones range between 2.1 and 3.9 W/(m∙K), while matrix thermal conductivity ranges between 3.4 and 7.4 W/(m∙K). Local heat flow for the Stralsund location averages 76 mW/m², which is in good agreement to values reported previously for the NEGB. For the first time, in-situ bulk thermal conductivity is indirectly calculated for entire borehole profiles in the NEGB using the determined surface heat flow and measured temperature data. Average bulk thermal conductivity, derived for geological formations within the Mesozoic section, ranges between 1.5 and 3.1 W/(m∙K). The measurement of both dry- and water-saturated thermal conductivities allow further evaluation of different two-component mixing models which are often applied in geothermal calculations (e.g., arithmetic mean, geometric mean, harmonic mean, Hashin-Shtrikman mean, and effective-medium theory mean). It is found that the geometric-mean model shows the best correlation between calculated and measured bulk thermal conductivity. However, by applying new model-dependent correction, equations the quality of fit could be significantly improved and the error diffusion of each model reduced. The 'corrected' geometric mean provides the most satisfying results and constitutes a universally applicable model for sedimentary rocks. Furthermore, lithotype-specific and model-independent conversion equations are developed permitting a calculation of water-saturated thermal conductivity from dry-measured thermal conductivity and porosity within an error range of 5 to 10\%. The limited availability of core samples and the expensive core-based laboratory measurements make it worthwhile to use petrophysical well logs to determine thermal conductivity for sedimentary rocks. The approach followed in this study is based on the detailed analyses of the relationships between thermal conductivity of rock-forming minerals, which are most abundant in sedimentary rocks, and the properties measured by standard logging tools. By using multivariate statistics separately for clastic, carbonate and evaporite rocks, the findings from these analyses allow the development of prediction equations from large artificial data sets that predict matrix thermal conductivity within an error of 4 to 11\%. These equations are validated successfully on a comprehensive subsurface data set from the NGB. In comparison to the application of earlier published approaches formation-dependent developed for certain areas, the new developed equations show a significant error reduction of up to 50\%. These results are used to infer rock thermal conductivity for entire borehole profiles. By inversion of corrected in-situ thermal-conductivity profiles, temperature profiles are calculated and compared to measured high-precision temperature logs. The resulting uncertainty in temperature prediction averages < 5\%, which reveals the excellent temperature prediction capabilities using the presented approach. In conclusion, data and methods are provided to achieve a much more detailed parameterization of thermal models.}, language = {en} } @phdthesis{Berg2013, author = {Berg, Gregor}, title = {Virtual prototypes for the model-based elicitation and validation of collaborative scenarios}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69729}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Requirements engineers have to elicit, document, and validate how stakeholders act and interact to achieve their common goals in collaborative scenarios. Only after gathering all information concerning who interacts with whom to do what and why, can a software system be designed and realized which supports the stakeholders to do their work. To capture and structure requirements of different (groups of) stakeholders, scenario-based approaches have been widely used and investigated. Still, the elicitation and validation of requirements covering collaborative scenarios remains complicated, since the required information is highly intertwined, fragmented, and distributed over several stakeholders. Hence, it can only be elicited and validated collaboratively. In times of globally distributed companies, scheduling and conducting workshops with groups of stakeholders is usually not feasible due to budget and time constraints. Talking to individual stakeholders, on the other hand, is feasible but leads to fragmented and incomplete stakeholder scenarios. Going back and forth between different individual stakeholders to resolve this fragmentation and explore uncovered alternatives is an error-prone, time-consuming, and expensive task for the requirements engineers. While formal modeling methods can be employed to automatically check and ensure consistency of stakeholder scenarios, such methods introduce additional overhead since their formal notations have to be explained in each interaction between stakeholders and requirements engineers. Tangible prototypes as they are used in other disciplines such as design, on the other hand, allow designers to feasibly validate and iterate concepts and requirements with stakeholders. This thesis proposes a model-based approach for prototyping formal behavioral specifications of stakeholders who are involved in collaborative scenarios. By simulating and animating such specifications in a remote domain-specific visualization, stakeholders can experience and validate the scenarios captured so far, i.e., how other stakeholders act and react. This interactive scenario simulation is referred to as a model-based virtual prototype. Moreover, through observing how stakeholders interact with a virtual prototype of their collaborative scenarios, formal behavioral specifications can be automatically derived which complete the otherwise fragmented scenarios. This, in turn, enables requirements engineers to elicit and validate collaborative scenarios in individual stakeholder sessions - decoupled, since stakeholders can participate remotely and are not forced to be available for a joint session at the same time. This thesis discusses and evaluates the feasibility, understandability, and modifiability of model-based virtual prototypes. Similarly to how physical prototypes are perceived, the presented approach brings behavioral models closer to being tangible for stakeholders and, moreover, combines the advantages of joint stakeholder sessions and decoupled sessions.}, language = {en} } @phdthesis{Hoffmann2013, author = {Hoffmann, Holger}, title = {Vertical structures induced by embedded propeller moonlets in Saturn's rings}, address = {Potsdam}, pages = {99 S.}, year = {2013}, language = {en} } @phdthesis{Schlolaut2013, author = {Schlolaut, Gordon}, title = {Varve and event layer chronology of Lake Suigetsu (Japan) back to 40 kyr BP and contribution to the international consensus atmospheric radiocarbon calibration curve}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69096}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {The main intention of the PhD project was to create a varve chronology for the Suigetsu Varves 2006' (SG06) composite profile from Lake Suigetsu (Japan) by thin section microscopy. The chronology was not only to provide an age-scale for the various palaeo-environmental proxies analysed within the SG06 project, but also and foremost to contribute, in combination with the SG06 14C chronology, to the international atmospheric radiocarbon calibration curve (IntCal). The SG06 14C data are based on terrestrial leaf fossils and therefore record atmospheric 14C values directly, avoiding the corrections necessary for the reservoir ages of the marine datasets, which are currently used beyond the tree-ring limit in the IntCal09 dataset (Reimer et al., 2009). The SG06 project is a follow up of the SG93 project (Kitagawa \& van der Plicht, 2000), which aimed to produce an atmospheric calibration dataset, too, but suffered from incomplete core recovery and varve count uncertainties. For the SG06 project the complete Lake Suigetsu sediment sequence was recovered continuously, leaving the task to produce an improved varve count. Varve counting was carried out using a dual method approach utilizing thin section microscopy and micro X-Ray Fluorescence (µXRF). The latter was carried out by Dr. Michael Marshall in cooperation with the PhD candidate. The varve count covers 19 m of composite core, which corresponds to the time frame from ≈10 to ≈40 kyr BP. The count result showed that seasonal layers did not form in every year. Hence, the varve counts from either method were incomplete. This rather common problem in varve counting is usually solved by manual varve interpolation. But manual interpolation often suffers from subjectivity. Furthermore, sedimentation rate estimates (which are the basis for interpolation) are generally derived from neighbouring, well varved intervals. This assumes that the sedimentation rates in neighbouring intervals are identical to those in the incompletely varved section, which is not necessarily true. To overcome these problems a novel interpolation method was devised. It is computer based and automated (i.e. avoids subjectivity and ensures reproducibility) and derives the sedimentation rate estimate directly from the incompletely varved interval by statistically analysing distances between successive seasonal layers. Therefore, the interpolation approach is also suitable for sediments which do not contain well varved intervals. Another benefit of the novel method is that it provides objective interpolation error estimates. Interpolation results from the two counting methods were combined and the resulting chronology compared to the 14C chronology from Lake Suigetsu, calibrated with the tree-ring derived section of IntCal09 (which is considered accurate). The varve and 14C chronology showed a high degree of similarity, demonstrating that the novel interpolation method produces reliable results. In order to constrain the uncertainties of the varve chronology, especially the cumulative error estimates, U-Th dated speleothem data were used by linking the low frequency 14C signal of Lake Suigetsu and the speleothems, increasing the accuracy and precision of the Suigetsu calibration dataset. The resulting chronology also represents the age-scale for the various palaeo-environmental proxies analysed in the SG06 project. One proxy analysed within the PhD project was the distribution of event layers, which are often representatives of past floods or earthquakes. A detailed microfacies analysis revealed three different types of event layers, two of which are described here for the first time for the Suigetsu sediment. The types are: matrix supported layers produced as result of subaqueous slope failures, turbidites produced as result of landslides and turbidites produced as result of flood events. The former two are likely to have been triggered by earthquakes. The vast majority of event layers was related to floods (362 out of 369), which allowed the construction of a respective chronology for the last 40 kyr. Flood frequencies were highly variable, reaching their greatest values during the global sea level low-stand of the Glacial, their lowest values during Heinrich Event 1. Typhoons affecting the region represent the most likely control on the flood frequency, especially during the Glacial. However, also local, non-climatic controls are suggested by the data. In summary, the work presented here expands and revises knowledge on the Lake Suigetsu sediment and enabls the construction of a far more precise varve chronology. The 14C calibration dataset is the first such derived from lacustrine sediments to be included into the (next) IntCal dataset. References: Kitagawa \& van der Plicht, 2000, Radiocarbon, Vol 42(3), 370-381 Reimer et al., 2009, Radiocarbon, Vol 51(4), 1111-1150}, language = {en} } @phdthesis{Czech2013, author = {Czech, Andreas}, title = {Variations in the tRNA pool of mammalian cells upon differentiation and oxidative stress}, address = {Potsdam}, pages = {98 S.}, year = {2013}, language = {en} } @phdthesis{Schleussner2013, author = {Schleussner, Carl-Friedrich}, title = {Variability and trend of the North Atlantic ocean circulation in past and future climate}, address = {Potsdam}, pages = {127 S.}, year = {2013}, language = {en} } @phdthesis{Muehlenbruch2013, author = {M{\"u}hlenbruch, Kristin}, title = {Updating the german diabetes risk score - model extensions, validation and reclassification}, address = {Potsdam}, pages = {131 S.}, year = {2013}, language = {en} } @phdthesis{Uhlemann2013, author = {Uhlemann, Steffi}, title = {Understanding trans-basin floods in Germany : data, information and knowledge}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68868}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Large Central European flood events of the past have demonstrated that flooding can affect several river basins at the same time leading to catastrophic economic and humanitarian losses that can stretch emergency resources beyond planned levels of service. For Germany, the spatial coherence of flooding, the contributing processes and the role of trans-basin floods for a national risk assessment is largely unknown and analysis is limited by a lack of systematic data, information and knowledge on past events. This study investigates the frequency and intensity of trans-basin flood events in Germany. It evaluates the data and information basis on which knowledge about trans-basin floods can be generated in order to improve any future flood risk assessment. In particu-lar, the study assesses whether flood documentations and related reports can provide a valuable data source for understanding trans-basin floods. An adaptive algorithm was developed that systematically captures trans-basin floods using series of mean daily discharge at a large number of sites of even time series length (1952-2002). It identifies the simultaneous occurrence of flood peaks based on the exceedance of an initial threshold of a 10 year flood at one location and consecutively pools all causally related, spatially and temporally lagged peak recordings at the other locations. A weighted cumulative index was developed that accounts for the spatial extent and the individual flood magnitudes within an event and allows quantifying the overall event severity. The parameters of the method were tested in a sensitivity analysis. An intensive study on sources and ways of information dissemination of flood-relevant publications in Germany was conducted. Based on the method of systematic reviews a strategic search approach was developed to identify relevant documentations for each of the 40 strongest trans-basin flood events. A novel framework for assessing the quality of event specific flood reports from a user's perspective was developed and validated by independent peers. The framework was designed to be generally applicable for any natural hazard type and assesses the quality of a document addressing accessibility as well as representational, contextual, and intrinsic dimensions of quality. The analysis of time-series of mean daily discharge resulted in the identification of 80 trans-basin flood events within the period 1952-2002 in Germany. The set is dominated by events that were recorded in the hydrological winter (64\%); 36\% occurred during the summer months. The occurrence of floods is characterised by a distinct clustering in time. Dividing the study period into two sub-periods, we find an increase in the percentage of winter events from 58\% in the first to 70.5\% in the second sub-period. Accordingly, we find a significant increase in the number of extreme trans-basin floods in the second sub-period. A large body of 186 flood relevant documentations was identified. For 87.5\% of the 40 strongest trans-basin floods in Germany at least one report has been found and for the most severe floods a substantial amount of documentation could be obtained. 80\% of the material can be considered grey literature (i.e. literature not controlled by commercial publishers). The results of the quality assessment show that the majority of flood event specific reports are of a good quality, i.e. they are well enough drafted, largely accurate and objective, and contain a substantial amount of information on the sources, pathways and receptors/consequences of the floods. The inclusion of this information in the process of knowledge building for flood risk assessment is recommended. Both the results as well as the data produced in this study are openly accessible and can be used for further research. The results of this study contribute to an improved spatial risk assessment in Germany. The identified set of trans-basin floods provides the basis for an assessment of the chance that flooding occurs simultaneously at a number of sites. The information obtained from flood event documentation can usefully supplement the analysis of the processes that govern flood risk.}, language = {en} } @phdthesis{Gumienny2013, author = {Gumienny, Raja Carola}, title = {Understanding the adoption of digital whiteboard systems for collaborative design work}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72417}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {User-centered design processes are the first choice when new interactive systems or services are developed to address real customer needs and provide a good user experience. Common tools for collecting user research data, conducting brainstormings, or sketching ideas are whiteboards and sticky notes. They are ubiquitously available, and no technical or domain knowledge is necessary to use them. However, traditional pen and paper tools fall short when saving the content and sharing it with others unable to be in the same location. They are also missing further digital advantages such as searching or sorting content. Although research on digital whiteboard and sticky note applications has been conducted for over 20 years, these tools are not widely adopted in company contexts. While many research prototypes exist, they have not been used for an extended period of time in a real-world context. The goal of this thesis is to investigate what the enablers and obstacles for the adoption of digital whiteboard systems are. As an instrument for different studies, we developed the Tele-Board software system for collaborative creative work. Based on interviews, observations, and findings from former research, we tried to transfer the analog way of working to the digital world. Being a software system, Tele-Board can be used with a variety of hardware and does not depend on special devices. This feature became one of the main factors for adoption on a larger scale. In this thesis, I will present three studies on the use of Tele-Board with different user groups and foci. I will use a combination of research methods (laboratory case studies and data from field research) with the overall goal of finding out when a digital whiteboard system is used and in which cases not. Not surprisingly, the system is used and accepted if a user sees a main benefit that neither analog tools nor other applications can offer. However, I found that these perceived benefits are very different for each user and usage context. If a tool provides possibilities to use in different ways and with different equipment, the chances of its adoption by a larger group increase. Tele-Board has now been in use for over 1.5 years in a global IT company in at least five countries with a constantly growing user base. Its use, advantages, and disadvantages will be described based on 42 interviews and usage statistics from server logs. Through these insights and findings from laboratory case studies, I will present a detailed analysis of digital whiteboard use in different contexts with design implications for future systems.}, language = {en} }