@phdthesis{Bendadani2015, author = {Bendadani, Carolin}, title = {1-Methylpyren: Biotransformation und Gentoxizit{\"a}t}, school = {Universit{\"a}t Potsdam}, pages = {188}, year = {2015}, language = {en} } @phdthesis{Graja2017, author = {Graja, Antonia}, title = {Aging-related changes of progenitor cell function and microenvironment impair brown adipose tissue regeneration}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2017}, language = {en} } @phdthesis{Mancini2021, author = {Mancini, Carola}, title = {Analysis of the effects of age-related changes of metabolic flux on brown adipocyte formation and function}, doi = {10.25932/publishup-51266}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 134}, year = {2021}, abstract = {Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, thereby allowing mammals to maintain a constant body temperature in a cold environment. Thermogenic capacity of this tissue is due to a high mitochondrial density and expression of uncoupling protein 1 (UCP1), a unique brown adipocyte marker which dissipates the mitochondrial proton gradient to produce heat instead of ATP. BAT is actively involved in whole-body metabolic homeostasis and during aging there is a loss of classical brown adipose tissue with concomitantly reduced browning capacity of white adipose tissue. Therefore, an age-dependent decrease of BAT-related energy expenditure capacity may exacerbate the development of metabolic diseases, including obesity and type 2 diabetes mellitus. Given that direct effects of age-related changes of BAT-metabolic flux have yet to be unraveled, the aim of the current thesis is to investigate potential metabolic mechanisms involved in BAT-dysfunction during aging and to identify suitable metabolic candidates as functional biomarkers of BAT-aging. To this aim, integration of transcriptomic, metabolomic and proteomic data analyses of BAT from young and aged mice was performed, and a group of candidates with age-related changes was revealed. Metabolomic analysis showed age-dependent alterations of metabolic intermediates involved in energy, nucleotide and vitamin metabolism, with major alterations regarding the purine nucleotide pool. These data suggest a potential role of nucleotide intermediates in age-related BAT defects. In addition, the screening of transcriptomic and proteomic data sets from BAT of young and aged mice allowed identification of a 60-kDa lysophospholipase, also known as L-asparaginase (Aspg), whose expression declines during BAT-aging. Involvement of Aspg in brown adipocyte thermogenic function was subsequently analyzed at the molecular level using in vitro approaches and animal models. The findings revealed sensitivity of Aspg expression to β3-adrenergic activation via different metabolic cues, including cold exposure and treatment with β3-adrenergic agonist CL. To further examine ASPG function in BAT, an over-expression model of Aspg in a brown adipocyte cell line was established and showed that these cells were metabolically more active compared to controls, revealing increased expression of the main brown-adipocyte specific marker UCP1, as well as higher lipolysis rates. An in vitro loss-of-function model of Aspg was also functionally analyzed, revealing reduced brown adipogenic characteristics and an impaired lipolysis, thus confirming physiological relevance of Aspg in brown adipocyte function. Characterization of a transgenic mouse model with whole-body inactivation of the Aspg gene (Aspg-KO) allowed investigation of the role of ASPG under in vivo conditions, indicating a mild obesogenic phenotype, hypertrophic white adipocytes, impairment of the early thermogenic response upon cold-stimulation and dysfunctional insulin sensitivity. Taken together, these data show that ASPG may represent a new functional biomarker of BAT-aging that regulates thermogenesis and therefore a potential target for the treatment of age-related metabolic disease.}, language = {en} } @phdthesis{Jacobs2015, author = {Jacobs, Simone}, title = {Biological mechanisms of the association between proportions of fatty acids in erythrocyte membranes and type 2 diabetes risk in the EPIC-Potsdam-Study}, pages = {157}, year = {2015}, language = {en} } @phdthesis{ColemanMacGregorofInneregny, author = {Coleman Mac Gregor of Inneregny, Verena}, title = {Cell-autonomous and cell-non-autonomous adaptation to skeletal muscle mitochondrial stress}, school = {Universit{\"a}t Potsdam}, pages = {86}, language = {en} } @phdthesis{Raschke2023, author = {Raschke, Stefanie}, title = {Characterization of selenium and copper in cell systems of the neurovascular unit}, doi = {10.25932/publishup-60366}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-603666}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 184, v}, year = {2023}, abstract = {The trace elements, selenium (Se) and copper (Cu) play an important role in maintaining normal brain function. Since they have essential functions as cofactors of enzymes or structural components of proteins, an optimal supply as well as a well-defined homeostatic regulation are crucial. Disturbances in trace element homeostasis affect the health status and contribute to the incidence and severity of various diseases. The brain in particular is vulnerable to oxidative stress due to its extensive oxygen consumption and high energy turnover, among other factors. As components of a number of antioxidant enzymes, both elements are involved in redox homeostasis. However, high concentrations are also associated with the occurrence of oxidative stress, which can induce cellular damage. Especially high Cu concentrations in some brain areas are associated with the development and progression of neurodegenerative diseases such as Alzheimer's disease (AD). In contrast, reduced Se levels were measured in brains of AD patients. The opposing behavior of Cu and Se renders the study of these two trace elements as well as the interactions between them being particularly relevant and addressed in this work.}, language = {en} } @phdthesis{Prandi2015, author = {Prandi, Simone}, title = {Characterization of the expression and function of bitter taste receptor genes in gastrointestinal tissues}, school = {Universit{\"a}t Potsdam}, pages = {165}, year = {2015}, language = {en} } @phdthesis{Henze2009, author = {Henze, Andrea}, title = {Chronic kidney disease and type 2 diabetes mellitus as factors influencing retinol-binding protein 4}, address = {Potsdam}, pages = {XI, 143 S. : Ill., graph. Darst.}, year = {2009}, language = {en} } @phdthesis{Boeuf2002, author = {Boeuf, St{\´e}phane}, title = {Comparative study of gene expression during the differentiation of white and brown preadipocytes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000542}, school = {Universit{\"a}t Potsdam}, year = {2002}, abstract = {Einleitung S{\"a}ugetiere haben zwei verschiedene Arten von Fettgewebe: das weiße Fettgewebe, welches vorwiegend zur Lipidspeicherung dient, und das braune Fettgewebe, welches sich durch seine F{\"a}higkeit zur zitterfreien Thermogenese auszeichnet. Weiße und braune Adipozyten sind beide mesodermalen Ursprungs. Die Mechanismen, die zur Entwicklung von Vorl{\"a}uferzellen in den weißen oder braunen Fettzellphenotyp f{\"u}hren, sind jedoch unbekannt. Durch verschiedene experimentelle Ans{\"a}tze konnte gezeigt werden, daß diese Adipocyten vermutlich durch die Differenzierung zweier Typen unterschiedlicher Vorl{\"a}uferzellen entstehen: weiße und braune Preadipozyten. Von dieser Hypothese ausgehend, war das Ziel dieser Studie, die Genexpression weißer und brauner Preadipozyten auf Unterschiede systematisch zu analysieren. Methoden Die zu vergleichenden Zellen wurden aus prim{\"a}ren Zellkulturen weißer und brauner Preadipozyten des dsungarischen Zwerghamsters gewonnen. „Representational Difference Analysis" wurde angewandt, um potentiell unterschiedlich exprimierte Gene zu isolieren. Die daraus resultierenden cDNA Fragmente von Kandidatengenen wurden mit Hilfe der Microarraytechnik untersucht. Die Expression dieser Gene wurde in braunen und weißen Fettzellen in verschiedenen Differenzierungsstadien und in braunem und weißem Fettgewebe verglichen. Ergebnisse 12 Gene, die in braunen und weißen Preadipozyten unterschiedlich exprimiert werden, konnten identifiziert werden. Drei Komplement Faktoren und eine Fetts{\"a}uren Desaturase werden in weißen Preadipozyten h{\"o}her exprimiert; drei Struktur Gene (Fibronectin, Metargidin und a Actinin 4), drei Gene verbunden mit transkriptioneller Regulation (Necdin, Vigilin und das „small nuclear ribonucleoprotein polypeptide A") sowie zwei Gene unbekannter Funktion werden in braunen Preadipozyten h{\"o}her exprimiert. Mittels Clusteranalyse (oder Gruppenanalyse) wurden die gesamten Genexpressionsdaten charakterisiert. Dabei konnten die Gene in 4 typischen Expressionsmuster aufgeteilt werden: in weißen Preadipozyten h{\"o}her exprimierte Gene, in braunen Preadipozyten h{\"o}her exprimierte Gene, w{\"a}hrend der Differenzierung herunter regulierte Gene und w{\"a}hrend der Differenzierung hoch regulierte Gene. Schlußfolgerungen In dieser Studie konnte gezeigt werden, daß weiße und braune Preadipozyten aufgrund der Expression verschiedener Gene unterschieden werden k{\"o}nnen. Es wurden mehrere Kandidatengene zur Bestimmung weißer und brauner Preadipozyten identifiziert. Außerdem geht aus den Genexpressionsdaten hervor, daß funktionell unterschiedliche Gruppen von Genen eine wichtige Rolle bei der Differenzierung von weißen und braunen Preadipozyten spielen k{\"o}nnten, wie z.B. Gene des Komplementsystems und der extrazellul{\"a}ren Matrix.}, subject = {S{\"a}ugetiere ; Fettgewebe ; Zelldifferenzierung ; Genexpression}, language = {en} } @phdthesis{Wittek2023, author = {Wittek, Laura}, title = {Comparison of metabolic cages - analysis of refinement measures on the welfare and metabolic parameters of laboratory mice}, doi = {10.25932/publishup-61120}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611208}, school = {Universit{\"a}t Potsdam}, pages = {IV, 160}, year = {2023}, abstract = {Housing in metabolic cages can induce a pronounced stress response. Metabolic cage systems imply housing mice on metal wire mesh for the collection of urine and feces in addition to monitoring food and water intake. Moreover, mice are single-housed, and no nesting, bedding, or enrichment material is provided, which is often argued to have a not negligible impact on animal welfare due to cold stress. We therefore attempted to reduce stress during metabolic cage housing for mice by comparing an innovative metabolic cage (IMC) with a commercially available metabolic cage from Tecniplast GmbH (TMC) and a control cage. Substantial refinement measures were incorporated into the IMC cage design. In the frame of a multifactorial approach for severity assessment, parameters such as body weight, body composition, food intake, cage and body surface temperature (thermal imaging), mRNA expression of uncoupling protein 1 (Ucp1) in brown adipose tissue (BAT), fur score, and fecal corticosterone metabolites (CMs) were included. Female and male C57BL/6J mice were single-housed for 24 h in either conventional Macrolon cages (control), IMC, or TMC for two sessions. Body weight decreased less in the IMC (females—1st restraint: 6.94\%; 2nd restraint: 6.89\%; males—1st restraint: 8.08\%; 2nd restraint: 5.82\%) compared to the TMC (females—1st restraint: 13.2\%; 2nd restraint: 15.0\%; males—1st restraint: 13.1\%; 2nd restraint: 14.9\%) and the IMC possessed a higher cage temperature (females—1st restraint: 23.7°C; 2nd restraint: 23.5 °C; males—1st restraint: 23.3 °C; 2nd restraint: 23.5 °C) compared with the TMC (females—1st restraint: 22.4 °C; 2nd restraint: 22.5 °C; males—1st restraint: 22.6 °C; 2nd restraint: 22.4 °C). The concentration of fecal corticosterone metabolites in the TMC (females—1st restraint: 1376 ng/g dry weight (DW); 2nd restraint: 2098 ng/g DW; males—1st restraint: 1030 ng/g DW; 2nd restraint: 1163 ng/g DW) was higher compared to control cage housing (females—1st restraint: 640 ng/g DW; 2nd restraint: 941 ng/g DW; males—1st restraint: 504 ng/g DW; 2nd restraint: 537 ng/g DW). Our results show the stress potential induced by metabolic cage restraint that is markedly influenced by the lower housing temperature. The IMC represents a first attempt to target cold stress reduction during metabolic cage application thereby producing more animal welfare friendly data.}, language = {en} }