@phdthesis{Rinne2024, author = {Rinne, Theresa Charlotte}, title = {The effects of nutrients on bone stem cell function and regeneration}, school = {Universit{\"a}t Potsdam}, pages = {V, 134}, year = {2024}, abstract = {Aging is associated with bone loss, which can lead to osteoporosis and high fracture risk. This coincides with the enhanced formation of bone marrow adipose tissue (BMAT), suggesting a negative effect of bone marrow adipocytes on skeletal health. Increased BMAT formation is also observed in pathologies such as obesity, type 2 diabetes and osteoporosis. However, a subset of bone marrow adipocytes forming the constitutive BMAT (cBMAT), arise early in life in the distal skeleton, contain high levels of unsaturated fatty acids and are thought to provide a physiological function. Regulated BMAT (rBMAT) forms during aging and obesity in proximal regions of the bone and contain a large proportion of saturated fatty acids. Paradoxically, BMAT accumulation is also enhanced during caloric restriction (CR), a life-span extending dietary intervention. This indicates, that different types of BMAT can form in response to opposing nutritional stimuli with potentially different functions. To this end, two types of nutritional interventions, CR and high fat diet (HFD), that are both described to induce BMAT accumulation were carried out. CR markedly increased BMAT formation in the proximal tibia and led to a higher proportion of unsaturated fatty acids, making it similar to the physiological cBMAT. Additionally, proximal and diaphyseal tibia regions displayed higher adiponectin expression. In aged mice, CR was associated with an improved trabecular bone structure. Taken together, these findings demonstrate, that the type of BMAT that forms during CR might provide beneficial effects for local bone stem/progenitor cells and metabolic health. The HFD intervention performed in this thesis showed no effect on BMAT accumulation and bone microstructure. RNA Seq analysis revealed alterations in the composition of the collagen-containing extracellular matrix (ECM). In order to investigate the effects of glucose homeostasis on osteogenesis, differentiation capacity of immortalized multipotent mesenchymal stromal cells (MSCs) and osteochondrogenic progenitor cells (OPCs) was analyzed. Insulin improved differentiation in both cell types, however, combination of with a high glucose concentration led to an impaired mineralization of the ECM. In the MSCs, this was accompanied by the formation of adipocytes, indicating negative effects of the adipocytes formed during hyperglycemic conditions on mineralization processes. However, the altered mineralization pattern and structure of the ECM was also observed in OPCs, which did not form any adipocytes, suggesting further negative effects of a hyperglycemic environment on osteogenic differentiation. In summary, the work provided in this thesis demonstrated that differentiation commitment of bone-resident stem cells can be altered through nutrient availability, specifically glucose. Surprisingly, both high nutrient supply, e.g. the hyperglycemic cell culture conditions, and low nutrient supply, e.g. CR, can induce adipogenic differentiation. However, while CR-induced adipocyte formation was associated with improved trabecular bone structure, adipocyte formation in a hyperglycemic cell-culture environment hampered mineralization. This thesis provides further evidence for the existence of different types of BMAT with specific functions.}, language = {en} } @phdthesis{Ronneberger2024, author = {Ronneberger, Sebastian}, title = {Nanolayer Fused Deposition Modeling (NanoFDM)}, school = {Universit{\"a}t Potsdam}, pages = {170}, year = {2024}, language = {en} } @phdthesis{Kanehira2023, author = {Kanehira, Yuya}, title = {Versatile DNA origami based SERS substrates for spectroscopic applications}, pages = {115}, year = {2023}, language = {en} } @phdthesis{Grohmann2024, author = {Grohmann, Nils-Hendrik}, title = {Strengthening the UN Human Rights Treaty Bodies}, series = {Jus Internationale et Europaeum}, journal = {Jus Internationale et Europaeum}, number = {202}, publisher = {Mohr Siebeck}, address = {T{\"u}bingen}, isbn = {978-3-16-162825-2}, issn = {1861-1893}, doi = {10.1628/978-3-16-162826-9}, pages = {XV, 315}, year = {2024}, abstract = {Nils-Hendrik Grohmann besch{\"a}ftigt sich mit dem noch andauernden St{\"a}rkungsprozess der UN-Menschenrechtsvertragsorgane. Er analysiert, welche rechtlichen Befugnisse die Aussch{\"u}sse haben, ob sie von sich aus Vorschl{\"a}ge einbringen k{\"o}nnen und inwieweit sie ihre Verfahrensweisen bisher aufeinander abgestimmt haben. Ein weiterer Schwerpunkt liegt auf der Zusammenarbeit zwischen den verschiedenen Aussch{\"u}ssen und der Frage, welche Rolle das Treffen der Vorsitzenden bei der St{\"a}rkung spielen kann.}, language = {en} } @phdthesis{Henning2024, author = {Henning, Thorsten}, title = {Cross-sectional associations of dietary biomarker patterns with health and nutritional status}, school = {Universit{\"a}t Potsdam}, pages = {111}, year = {2024}, language = {en} } @phdthesis{Kersting2024, author = {Kersting, Katerina}, title = {Development of a CRISPR/Cas gene editing technique for the coccolithophore Chrysotila carterae}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2024}, language = {en} } @phdthesis{Stechemesser2023, author = {Stechemesser, Annika}, title = {Human behaviour in a warming world}, school = {Universit{\"a}t Potsdam}, pages = {339}, year = {2023}, language = {en} } @phdthesis{You2024, author = {You, Lili}, title = {Chloroplast engineering for recombinant protein production and stress protection}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2024}, language = {en} } @phdthesis{Szekely2024, author = {Sz{\´e}kely, Andr{\´a}s Csaba}, title = {Long-distance circadian coordination via a phloem-delivered mobile transcript}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2024}, language = {en} } @phdthesis{Melliger2024, author = {Melliger, Marc Andr{\´e}}, title = {Effects of exposing renewables to the market}, school = {Universit{\"a}t Potsdam}, pages = {xi, 139}, year = {2024}, abstract = {Electricity production contributes to a significant share of greenhouse gas emissions in Europe and is thus an important driver of climate change. To fulfil the Paris Agreement, the European Union (EU) needs a rapid transition to a fully decarbonised power production system. Presumably, such a system will be largely based on renewables. So far, many EU countries have supported a shift towards renewables such as solar and wind power using support schemes, but the economic and political context is changing. Renewables are now cheaper than ever before and have become cost-competitive with conventional technologies. Therefore, European policymakers are striving to better integrate renewables into a competitive market and to increase the cost-effectiveness of the expansion of renewables. The first step was to replace previous fixed-price schemes with competitive auctions. In a second step, these auctions have become more technology-open. Finally, some governments may phase out any support for renewables and fully expose them to the competitive power market. However, such policy changes may be at odds with the need to rapidly expand renewables and meet national targets due to market characteristics and investors' risk perception. Without support, price risks are higher, and it may be difficult to meet an investor's income expectations. Furthermore, policy changes across different countries could have unexpected effects if power markets are interconnected and investors able to shift their investments. Finally, in multi-technology auctions, technologies may dominate, which can be a risk for long-term power system reliability. Therefore, in my thesis, I explore the effects of phasing out support policies for renewables, of coordinating these phase-outs across countries, and of using multi-technology designs. I expand the public policy literature about investment behaviour and policy design as well as policy change and coordination, and I further develop an agent-based model. The main questions of my thesis are what the cost and deployment effects of gradually exposing renewables to market forces would be and how coordination between countries affects investors' decisions and market prices.. In my three contributions to the academic literature, I use different methods and come to the following results. In the first contribution, I use a conjoint analysis and market simulation to evaluate the effects of phasing out support or reintroducing feed-in tariffs from the perspective of investors. I find that a phase-out leads to investment shifts, either to other still-supported technologies or to other countries that continue to offer support. I conclude that the coordination of policy changes avoids such shifts.. In the second contribution, I integrate the empirically-derived preferences from the first contribution in to an agent-based power system model of two countries to simulate the effects of ending auctions for renewables. I find that this slows the energy transition, and that cross-border effects are relevant. Consequently, continued support is necessary to meet the national renewables targets. In the third contribution, I analyse the outcome of past multi-technology auctions using descriptive statistics, regression analysis as well as case study comparisons. I find that the outcomes are skewed towards single technologies. This cannot be explained by individual design elements of the auctions, but rather results from context-specific and country-specific characteristics. Based on this, I discuss potential implications for long-term power system reliability. The main conclusions of my thesis are that a complete phase-out of renewables support would slow down the energy transition and thus jeopardize climate targets, and that multi-technology auctions may pose a risk for some countries, especially those that cannot regulate an unbalanced power plant portfolio in the long term. If policymakers decide to continue supporting renewables, they may consider adopting technology-specific auctions to better steer their portfolio. In contrast, if policymakers still want to phase out support, they should coordinate these policy changes with other countries. Otherwise, overall transition costs can be higher, because investment decisions shift to still-supported but more expensive technologies.}, language = {en} }