@phdthesis{Freimuth2024, author = {Freimuth, Nina}, title = {Elucidating the suppression of root hair formation by a member of a novel, short ENTH protein family in Arabidopsis thaliana}, doi = {10.25932/publishup-63499}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634994}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 156}, year = {2024}, abstract = {This work analyzed functional and regulatory aspects of the so far little characterized EPSIN N-terminal Homology (ENTH) domain-containing protein EPSINOID2 in Arabidopsis thaliana. ENTH domain proteins play accessory roles in the formation of clathrin-coated vesicles (CCVs) (Zouhar and Sauer 2014). Their ENTH domain interacts with membranes and their typically long, unstructured C-terminus contains binding motifs for adaptor protein complexes and clathrin itself. There are seven ENTH domain proteins in Arabidopsis. Four of them possess the canonical long C-terminus and participate in various, presumably CCV-related intracellular transport processes (Song et al. 2006; Lee et al. 2007; Sauer et al. 2013; Collins et al. 2020; Heinze et al. 2020; Mason et al. 2023). The remaining three ENTH domain proteins, however, have severely truncated C-termini and were termed EPSINOIDs (Zouhar and Sauer 2014; Freimuth 2015). Their functions are currently unclear. Preceding studies focusing on EPSINOID2 indicated a role in root hair formation: epsinoid2 T DNA mutants exhibited an increased root hair density and EPSINOID2-GFP was specifically located in non-hair cell files in the Arabidopsis root epidermis (Freimuth 2015, 2019). In this work, it was clearly shown that loss of EPSINOID2 leads to an increase in root hair density through analyses of three independent mutant alleles, including a newly generated CRISPR/Cas9 full deletion mutant. The ectopic root hairs emerging from non-hair positions in all epsinoid2 mutant alleles are most likely not a consequence of altered cell fate, because extensive genetic analyses placed EPSINOID2 downstream of the established epidermal patterning network. Thus, EPSINOID2 seems to act as a cell autonomous inhibitor of root hair formation. Attempts to confirm this hypothesis by ectopically overexpressing EPSINOID2 led to the discovery of post-transcriptional and -translational regulation through different mechanisms. One involves the little characterized miRNA844-3p. Interference with this pathway resulted in ectopic EPSINOID2 overexpression and decreased root hair density, confirming it as negative factor in root hair formation. A second mechanism likely involves proteasomal degradation. Treatment with proteasomal inhibitor MG132 led to EPSINOID2-GFP accumulation, and a KEN box degron motif was identified in the EPSINOID2 sequence associated with degradation through a ubiquitin/proteasome-dependent pathway. In line with a tight dose regulation, genetic analyses of all three mutant alleles indicate that EPSINOID2 is haploinsufficient. Lastly, it was revealed that, although EPSINOID2 promoter activity was found in all epidermal cells, protein accumulation was observed in N-cells only, hinting at yet another layer of regulation.}, language = {en} } @phdthesis{Siebler2024, author = {Siebler, Lara}, title = {Identifying novel regulators of heat stress memory in Arabidopsis thaliana}, doi = {10.25932/publishup-63447}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-634477}, school = {Universit{\"a}t Potsdam}, pages = {135}, year = {2024}, abstract = {Heat stress (HS) is a major abiotic stress that negatively affects plant growth and productivity. However, plants have developed various adaptive mechanisms to cope with HS, including the acquisition and maintenance of thermotolerance, which allows them to respond more effectively to subsequent stress episodes. HS memory includes type II transcriptional memory which is characterized by enhanced re-induction of a subset of HS memory genes upon recurrent HS. In this study, new regulators of HS memory in A. thaliana were identified through the characterization of rein mutants. The rein1 mutant carries a premature stop in CYCLIN-DEPENDENT-KINASE 8 (CDK8) which is part of the cyclin kinase module of the Mediator complex. Rein1 seedlings show impaired type II transcriptional memory in multiple heat-responsive genes upon re-exposure to HS. Additionally, the mutants exhibit a significant deficiency in HS memory at the physiological level. Interaction studies conducted in this work indicate that CDK8 associates with the memory HEAT SHOCK FACTORs HSAF2 and HSFA3. The results suggest that CDK8 plays a crucial role in HS memory in plants together with other memory HSFs, which may be potential targets of the CDK8 kinase function. Understanding the role and interaction network of the Mediator complex during HS-induced transcriptional memory will be an exciting aspect of future HS memory research. The second characterized mutant, rein2, was selected based on its strongly impaired pAPX2::LUC re-induction phenotype. In gene expression analysis, the mutant revealed additional defects in the initial induction of HS memory genes. Along with this observation, basal thermotolerance was impaired similarly as HS memory at the physiological level in rein2. Sequencing of backcrossed bulk segregants with subsequent fine mapping narrowed the location of REIN2 to a 1 Mb region on chromosome 1. This interval contains the At1g65440 gene, which encodes the histone chaperone SPT6L. SPT6L interacts with chromatin remodelers and bridges them to the transcription machinery to regulate nucleosome and Pol II occupancy around the transcriptional start site. The EMS-induced missense mutation in SPT6L may cause altered HS-induced gene expression in rein2, possibly triggered by changes in the chromatin environment resulting from altered histone chaperone function. Expanding research on screen-derived factors that modify type II transcriptional memory has the potential to enhance our understanding of HS memory in plants. Discovering connections between previously identified memory factors will help to elucidate the underlying network of HS memory. This knowledge can initiate new approaches to improve heat resilience in crops.}, language = {en} } @phdthesis{Kiss2024, author = {Kiss, Andrea}, title = {Moss-associated bacterial and archaeal communities of northern peatlands: key taxa, environmental drivers and potential functions}, doi = {10.25932/publishup-63064}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630641}, school = {Universit{\"a}t Potsdam}, pages = {XX, 139, liv}, year = {2024}, abstract = {Moss-microbe associations are often characterised by syntrophic interactions between the microorganisms and their hosts, but the structure of the microbial consortia and their role in peatland development remain unknown. In order to study microbial communities of dominant peatland mosses, Sphagnum and brown mosses, and the respective environmental drivers, four study sites representing different successional stages of natural northern peatlands were chosen on a large geographical scale: two brown moss-dominated, circumneutral peatlands from the Arctic and two Sphagnum-dominated, acidic peat bogs from subarctic and temperate zones. The family Acetobacteraceae represented the dominant bacterial taxon of Sphagnum mosses from various geographical origins and displayed an integral part of the moss core community. This core community was shared among all investigated bryophytes and consisted of few but highly abundant prokaryotes, of which many appear as endophytes of Sphagnum mosses. Moreover, brown mosses and Sphagnum mosses represent habitats for archaea which were not studied in association with peatland mosses so far. Euryarchaeota that are capable of methane production (methanogens) displayed the majority of the moss-associated archaeal communities. Moss-associated methanogenesis was detected for the first time, but it was mostly negligible under laboratory conditions. Contrarily, substantial moss-associated methane oxidation was measured on both, brown mosses and Sphagnum mosses, supporting that methanotrophic bacteria as part of the moss microbiome may contribute to the reduction of methane emissions from pristine and rewetted peatlands of the northern hemisphere. Among the investigated abiotic and biotic environmental parameters, the peatland type and the host moss taxon were identified to have a major impact on the structure of moss-associated bacterial communities, contrarily to archaeal communities whose structures were similar among the investigated bryophytes. For the first time it was shown that different bog development stages harbour distinct bacterial communities, while at the same time a small core community is shared among all investigated bryophytes independent of geography and peatland type. The present thesis displays the first large-scale, systematic assessment of bacterial and archaeal communities associated both with brown mosses and Sphagnum mosses. It suggests that some host-specific moss taxa have the potential to play a key role in host moss establishment and peatland development.}, language = {en} } @phdthesis{Hammel2024, author = {Hammel, Alexander}, title = {Establishing the red microalga Porphyridium purpureum as a novel platform for the production of recombinant proteins}, doi = {10.25932/publishup-63270}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-632709}, school = {Universit{\"a}t Potsdam}, pages = {ix, 159}, year = {2024}, abstract = {Microalgae have been recognized as a promising green production platform for recombinant proteins. The majority of studies on recombinant protein expression have been conducted in the green microalga C. reinhardtii. While promising improvement regarding nuclear transgene expression in this alga has been made, it is still inefficient due to epigenetic silencing, often resulting in low yields that are not competitive with other expressor organisms. Other microalgal species might be better suited for high-level protein expression, but are limited in their availability of molecular tools. The red microalga Porphyridium purpureum recently emerged as candidate for the production of recombinant proteins. It is promising in that transformation vectors are episomally maintained as autonomously replicating plasmids in the nucleus at a high copy number, thus leading to high expression values in this red alga. In this work, we expand the genetic tools for P. purpureum and investigate parameters that govern efficient transgene expression. We provide an improved transformation protocol to streamline the generation of transgenic lines in this organism. After being able to efficiently generate transgenic lines, we showed that codon usage is a main determinant of high-level transgene expression, not only at the protein level but also at the level of mRNA accumulation. The optimized expression constructs resulted in YFP accumulation up to an unprecedented 5\% of the total soluble protein. Furthermore, we designed new constructs conferring efficient transgene expression into the culture medium, simplifying purification and harvests of recombinant proteins. To further improve transgene expression, we tested endogenous promoters driving the most highly transcribed genes in P. purpureum and found minor increase of YFP accumulation. We employed the previous findings to express complex viral antigens from the hepatitis B virus and the hepatitis C virus in P. purpureum to demonstrate its feasibility as producer of biopharmaceuticals. The viral glycoproteins were successfully produced to high levels and could reach their native confirmation, indicating a functional glycosylation machinery and an appropriate folding environment in this red alga. We could successfully upscale the biomass production of transgenic lines and with that provide enough material for immunization trials in mice that were performed in collaboration. These trials showed no toxicity of neither the biomass nor the purified antigens, and, additionally, the algal-produced antigens were able to elicit a strong and specific immune response. The results presented in this work pave the way for P. purpureum as a new promising producer organism for biopharmaceuticals in the microalgal field.}, language = {en} } @phdthesis{Cheng2024, author = {Cheng, Feng}, title = {Evolution and ontogeny of electric organ discharge in African weakly electric fish genus Campylomormyrus: a genomic and transcriptomic perspective}, doi = {10.25932/publishup-63017}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630172}, school = {Universit{\"a}t Potsdam}, pages = {176}, year = {2024}, abstract = {The African weakly electric fishes (Mormyridae) exhibit a remarkable adaptive radiation possibly due to their species-specific electric organ discharges (EODs). It is produced by a muscle-derived electric organ that is located in the caudal peduncle. Divergence in EODs acts as a pre-zygotic isolation mechanism to drive species radiations. However, the mechanism behind the EOD diversification are only partially understood. The aim of this study is to explore the genetic basis of EOD diversification from the gene expression level across Campylomormyrus species/hybrids and ontogeny. I firstly produced a high quality genome of the species C. compressirostris as a valuable resource to understand the electric fish evolution. The next study compared the gene expression pattern between electric organs and skeletal muscles in Campylomormyrus species/hybrids with different types of EOD duration. I identified several candidate genes with an electric organ-specific expression, e.g. KCNA7a, KLF5, KCNJ2, SCN4aa, NDRG3, MEF2. The overall genes expression pattern exhibited a significant association with EOD duration in all analyzed species/hybrids. The expression of several candidate genes, e.g. KCNJ2, KLF5, KCNK6 and KCNQ5, possibly contribute to the regulation of EOD duration in Campylomormyrus due to their increasing or decreasing expression. Several potassium channel genes showed differential expression during ontogeny in species and hybrid with EOD alteration, e.g. KCNJ2. I next explored allele specific expression of intragenus hybrids by crossing the duration EOD species C. compressirostris with the medium duration EOD species C. tshokwe and the elongated duration EOD species C. rhynchophorus. The hybrids exhibited global expression dominance of the C. compressirostris allele in the adult skeletal muscle and electric organ, as well as in the juvenile electric organ. Only the gene KCNJ2 showed dominant expression of the allele from C. rhynchophorus, and this was increasingly dominant during ontogeny. It hence supported our hypothesis that KCNJ2 is a key gene of regulating EOD duration. Our results help us to understand, from a genetic perspective, how gene expression effect the EOD diversification in the African weakly electric fish.}, language = {en} } @phdthesis{Kersting2024, author = {Kersting, Katerina}, title = {Development of a CRISPR/Cas gene editing technique for the coccolithophore Chrysotila carterae}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2024}, language = {en} } @phdthesis{Stange2024, author = {Stange, Maike}, title = {A study on Coronin-A and Aip1 function in motility of Dictyostelium discoideum and on Aip1 interchangeability between Dictyostelium discoideum and Arabidopsis thaliana}, doi = {10.25932/publishup-62856}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-628569}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 168}, year = {2024}, abstract = {Actin is one of the most highly conserved proteins in eukaryotes and distinct actin-related proteins with filament-forming properties are even found in prokaryotes. Due to these commonalities, actin-modulating proteins of many species share similar structural properties and proposed functions. The polymerization and depolymerization of actin are critical processes for a cell as they can contribute to shape changes to adapt to its environment and to move and distribute nutrients and cellular components within the cell. However, to what extent functions of actin-binding proteins are conserved between distantly related species, has only been addressed in a few cases. In this work, functions of Coronin-A (CorA) and Actin-interacting protein 1 (Aip1), two proteins involved in actin dynamics, were characterized. In addition, the interchangeability and function of Aip1 were investigated in two phylogenetically distant model organisms. The flowering plant Arabidopsis thaliana (encoding two homologs, AIP1-1 and AIP1-2) and in the amoeba Dictyostelium discoideum (encoding one homolog, DdAip1) were chosen because the functions of their actin cytoskeletons may differ in many aspects. Functional analyses between species were conducted for AIP1 homologs as flowering plants do not harbor a CorA gene. In the first part of the study, the effect of four different mutation methods on the function of Coronin-A protein and the resulting phenotype in D. discoideum was revealed in two genetic knockouts, one RNAi knockdown and a sudden loss-of-function mutant created by chemical-induced dislocation (CID). The advantages and disadvantages of the different mutation methods on the motility, appearance and development of the amoebae were investigated, and the results showed that not all observed properties were affected with the same intensity. Remarkably, a new combination of Selection-Linked Integration and CID could be established. In the second and third parts of the thesis, the exchange of Aip1 between plant and amoeba was carried out. For A. thaliana, the two homologs (AIP1-1 and AIP1-2) were analyzed for functionality as well as in D. discoideum. In the Aip1-deficient amoeba, rescue with AIP1-1 was more effective than with AIP1-2. The main results in the plant showed that in the aip1-2 mutant background, reintroduced AIP1-2 displayed the most efficient rescue and A. thaliana AIP1-1 rescued better than DdAip1. The choice of the tagging site was important for the function of Aip1 as steric hindrance is a problem. The DdAip1 was less effective when tagged at the C-terminus, while the plant AIP1s showed mixed results depending on the tag position. In conclusion, the foreign proteins partially rescued phenotypes of mutant plants and mutant amoebae, despite the organisms only being very distantly related in evolutionary terms.}, language = {en} } @phdthesis{You2024, author = {You, Lili}, title = {Chloroplast engineering for recombinant protein production and stress protection}, school = {Universit{\"a}t Potsdam}, pages = {133}, year = {2024}, language = {en} } @phdthesis{Szekely2024, author = {Sz{\´e}kely, Andr{\´a}s Csaba}, title = {Long-distance circadian coordination via a phloem-delivered mobile transcript}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2024}, language = {en} } @phdthesis{Wojciechowska2022, author = {Wojciechowska, Izabela}, title = {The journey towards the discovery of new protein-metabolite interactions in Arabidopsis thaliana and further functional characterization of selected binding events}, school = {Universit{\"a}t Potsdam}, pages = {150}, year = {2022}, language = {en} }