@phdthesis{Tan2023, author = {Tan, Jing}, title = {Multi-Agent Reinforcement Learning for Interactive Decision-Making}, doi = {10.25932/publishup-60700}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607000}, school = {Universit{\"a}t Potsdam}, pages = {xii, 135}, year = {2023}, abstract = {Distributed decision-making studies the choices made among a group of interactive and self-interested agents. Specifically, this thesis is concerned with the optimal sequence of choices an agent makes as it tries to maximize its achievement on one or multiple objectives in the dynamic environment. The optimization of distributed decision-making is important in many real-life applications, e.g., resource allocation (of products, energy, bandwidth, computing power, etc.) and robotics (heterogeneous agent cooperation on games or tasks), in various fields such as vehicular network, Internet of Things, smart grid, etc. This thesis proposes three multi-agent reinforcement learning algorithms combined with game-theoretic tools to study strategic interaction between decision makers, using resource allocation in vehicular network as an example. Specifically, the thesis designs an interaction mechanism based on second-price auction, incentivizes the agents to maximize multiple short-term and long-term, individual and system objectives, and simulates a dynamic environment with realistic mobility data to evaluate algorithm performance and study agent behavior. Theoretical results show that the mechanism has Nash equilibria, is a maximization of social welfare and Pareto optimal allocation of resources in a stationary environment. Empirical results show that in the dynamic environment, our proposed learning algorithms outperform state-of-the-art algorithms in single and multi-objective optimization, and demonstrate very good generalization property in significantly different environments. Specifically, with the long-term multi-objective learning algorithm, we demonstrate that by considering the long-term impact of decisions, as well as by incentivizing the agents with a system fairness reward, the agents achieve better results in both individual and system objectives, even when their objectives are private, randomized, and changing over time. Moreover, the agents show competitive behavior to maximize individual payoff when resource is scarce, and cooperative behavior in achieving a system objective when resource is abundant; they also learn the rules of the game, without prior knowledge, to overcome disadvantages in initial parameters (e.g., a lower budget). To address practicality concerns, the thesis also provides several computational performance improvement methods, and tests the algorithm in a single-board computer. Results show the feasibility of online training and inference in milliseconds. There are many potential future topics following this work. 1) The interaction mechanism can be modified into a double-auction, eliminating the auctioneer, resembling a completely distributed, ad hoc network; 2) the objectives are assumed to be independent in this thesis, there may be a more realistic assumption regarding correlation between objectives, such as a hierarchy of objectives; 3) current work limits information-sharing between agents, the setup befits applications with privacy requirements or sparse signaling; by allowing more information-sharing between the agents, the algorithms can be modified for more cooperative scenarios such as robotics.}, language = {en} }