@phdthesis{Li2023, author = {Li, Zhen}, title = {Formation of Sub-Permafrost Methane Hydrate Reproduced by Numerical Modeling}, doi = {10.25932/publishup-60330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-603302}, school = {Universit{\"a}t Potsdam}, pages = {XII, 109}, year = {2023}, abstract = {Natural gas hydrates are ice-like crystalline compounds containing water cavities that trap natural gas molecules like methane (CH4), which is a potent greenhouse gas with high energy density. The Mallik site at the Mackenzie Delta in the Canadian Arctic contains a large volume of technically recoverable CH4 hydrate beneath the base of the permafrost. Understanding how the sub-permafrost hydrate is distributed can aid in searching for the ideal locations for deploying CH4 production wells to develop the hydrate as a cleaner alternative to crude oil or coal. Globally, atmospheric warming driving permafrost thaw results in sub-permafrost hydrate dissociation, releasing CH4 into the atmosphere to intensify global warming. It is therefore crucial to evaluate the potential risk of hydrate dissociation due to permafrost degradation. To quantitatively predict hydrate distribution and volume in complex sub-permafrost environments, a numerical framework was developed to simulate sub-permafrost hydrate formation by coupling the equilibrium CH4-hydrate formation approach with a fluid flow and transport simulator (TRANSPORTSE). In addition, integrating the equations of state describing ice melting and forming with TRANSPORTSE enabled this framework to simulate the permafrost evolution during the sub-permafrost hydrate formation. A modified sub-permafrost hydrate formation mechanism for the Mallik site is presented in this study. According to this mechanism, the CH4-rich fluids have been vertically transported since the Late Pleistocene from deep overpressurized zones via geologic fault networks to form the observed hydrate deposits in the Kugmallit-Mackenzie Bay Sequences. The established numerical framework was verified by a benchmark of hydrate formation via dissolved methane. Model calibration was performed based on laboratory data measured during a multi-stage hydrate formation experiment undertaken in the LArge scale Reservoir Simulator (LARS). As the temporal and spatial evolution of simulated and observed hydrate saturation matched well, the LARS model was therefore validated. This laboratory-scale model was then upscaled to a field-scale 2D model generated from a seismic transect across the Mallik site. The simulation confirmed the feasibility of the introduced sub-permafrost hydrate formation mechanism by demonstrating consistency with field observations. The 2D model was extended to the first 3D model of the Mallik site by using well-logs and seismic profiles, to investigate the geologic controls on the spatial hydrate distribution. An assessment of this simulation revealed the hydraulic contribution of each geological element, including relevant fault networks and sedimentary sequences. Based on the simulation results, the observed heterogeneous distribution of sub-permafrost hydrate resulted from the combined factors of the source-gas generation rate, subsurface temperature, and the permeability of geologic elements. Analysis of the results revealed that the Mallik permafrost was heated by 0.8-1.3 °C, induced by the global temperature increase of 0.44 °C and accelerated by Arctic amplification from the early 1970s to the mid-2000s. This study presents a numerical framework that can be applied to study the formation of the permafrost-hydrate system from laboratory to field scales, across timescales ranging from hours to millions of years. Overall, these simulations deepen the knowledge about the dominant factors controlling the spatial hydrate distribution in sub-permafrost environments with heterogeneous geologic elements. The framework can support improving the design of hydrate formation experiments and provide valuable contributions to future industrial hydrate exploration and exploitation activities.}, language = {en} } @phdthesis{Otto2017, author = {Otto, Christopher}, title = {Numerical analysis of thermal, hydraulic and mechanical processes in the near- and far-field of underground coal gasification reactors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404625}, school = {Universit{\"a}t Potsdam}, pages = {XII, 115}, year = {2017}, abstract = {Die Untertagevergasung von Kohle (UTV) erm{\"o}glicht die Erschließung konventionell nicht f{\"o}rderbarer Kohleressourcen und bietet dadurch Potenzial zur Erh{\"o}hung der weltweiten Kohlereserven. Bei der in-situ Kohleumwandlung entsteht ein hochkalorisches Synthesegas, das elektrifiziert oder zur Gewinnung chemischer Rohstoffe und synthetischer Kraftstoffe eingesetzt werden kann. Neben den wirtschaftlichen M{\"o}glichkeiten, bestehen jedoch auch standort-spezifische Umweltgef{\"a}hrdungspotentiale durch Subsidenz und Schadstoffmigration von UTV-R{\"u}ckst{\"a}nden in nutzbare Grundwasserleiter. Eine nachhaltige und effiziente UTV erfordert ein umfangreiches Verst{\"a}ndnis der thermisch, hydraulisch und mechanisch gekoppelten Prozesse im UTV-Reaktornahbereich. Aufgrund der hohen Investitionskosten von UTV-Pilotanlagen, sind numerische Simulationen gekoppelter Prozesse von entscheidender Bedeutung f{\"u}r die Bewertung m{\"o}glicher UTV-Umweltauswirkungen. Im Rahmen dieser Arbeit wird die UTV-induzierte Permeabilit{\"a}tsver{\"a}nderung, Erzeugung m{\"o}glicher hydraulischer Kurzschl{\"u}sse benachbarter Reaktoren und Dynamik nicht-isothermer Multiphasenfl{\"u}sse mit gekoppelten Simulationen analysiert. Die Simulationsergebnisse zeigen, dass eine Implementierung temperaturabh{\"a}ngiger thermo-mechanischer Gesteinsparameter nur f{\"u}r Untersuchungen von Permeabilit{\"a}ts-{\"a}nderungen im Reaktornachbereich notwendig ist. Die Ergebnisse erlauben somit eine recheneffiziente Realisierung von komplexen thermo-mechanisch gekoppelten Simulations-studien regionalskaliger Modelle mit konstanten Gesteinsparametern, bei nahezu gleichbleibender Ergebnisgenauigkeit, die zur Bewertung von UTV-Umweltgef{\"a}hrdungs-potenzialen beitragen. Simulationen zur Ausbildung hydraulischer Kurzschl{\"u}sse zwischen einzelnen UTV-Reaktoren auf regionaler Skala, verdeutlichen die Relevanz von geologischen St{\"o}rungen an einem UTV-Standort, da diese durch Reaktivierung hydraulische Verbindungen induzieren und somit einen effizienten und nachhaltigen UTV-Betrieb negativ beeintr{\"a}chtigen k{\"o}nnen. In diesem Zusammenhang kommt der Ausbildung einer Wasserdampfphase, der sogenannte „steam jacket", im Hochtemperaturnahbereich von UTV-Reaktoren, als potenzielle Barriere zur Vermeidung von UTV-Schadstoffaustritten und zur potenziellen Minimierung von Energieverlusten eine entscheidende Bedeutung zu. Diese steam jackets entstehen durch evaporiertes Formationswasser und sind komplexe nicht-isotherme Multiphasenfluss-Ph{\"a}nomene. F{\"u}r ein verbessertes Prozessverst{\"a}ndnis dieser Multiphasenfl{\"u}sse, wurde ein neuartiges Modellkonzept entwickelt, welches, validiert gegen Feldversuchsdaten, erstmals sowohl eine Quantifizierung als auch Prognose von Wasserflussraten in und aus einem UTV-Reaktor erlaubt. Die Ergebnisse der vorgelegten Doktorarbeit bilden eine wichtige Grundlage f{\"u}r eine erfolgreiche Integration gekoppelter thermo-hydro-mechanischer Simulationen in weiterf{\"u}hrende Studien. Vor dem Hintergrund hoher UTV-Umweltgef{\"a}hrdungspotentiale, k{\"o}nnen diese zur verbesserten Bewertung und Minderung von UTV-Umweltauswirkungen beitragen, sowie die UTV-Effizienz nachhaltig optimieren.}, language = {en} }