@phdthesis{Kemter2022, author = {Kemter, Matthias}, title = {River floods in a changing world}, doi = {10.25932/publishup-55856}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558564}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 120}, year = {2022}, abstract = {River floods are among the most devastating natural hazards worldwide. As their generation is highly dependent on climatic conditions, their magnitude and frequency are projected to be affected by future climate change. Therefore, it is crucial to study the ways in which a changing climate will, and already has, influenced flood generation, and thereby flood hazard. Additionally, it is important to understand how other human influences - specifically altered land cover - affect flood hazard at the catchment scale. The ways in which flood generation is influenced by climatic and land cover conditions differ substantially in different regions. The spatial variability of these effects needs to be taken into account by using consistent datasets across large scales as well as applying methods that can reflect this heterogeneity. Therefore, in the first study of this cumulative thesis a complex network approach is used to find 10 clusters of similar flood behavior among 4390 catchments in the conterminous United States. By using a consistent set of 31 hydro-climatological and land cover variables, and training a separate Random Forest model for each of the clusters, the regional controls on flood magnitude trends between 1960-2010 are detected. It is shown that changes in rainfall are the most important drivers of these trends, while they are regionally controlled by land cover conditions. While climate change is most commonly associated with flood magnitude trends, it has been shown to also influence flood timing. This can lead to trends in the size of the area across which floods occur simultaneously, the flood synchrony scale. The second study is an analysis of data from 3872 European streamflow gauges and shows that flood synchrony scales have increased in Western Europe and decreased in Eastern Europe. These changes are attributed to changes in flood generation, especially a decreasing relevance of snowmelt. Additionally, the analysis shows that both the absolute values and the trends of flood magnitudes and flood synchrony scales are positively correlated. If these trends persist in the future and are not accounted for, the combined increases of flood magnitudes and flood synchrony scales can exceed the capacities of disaster relief organizations and insurers. Hazard cascades are an additional way through which climate change can influence different aspects of flood hazard. The 2019/2020 wildfires in Australia, which were preceded by an unprecedented drought and extinguished by extreme rainfall that led to local flooding, present an opportunity to study the effects of multiple preceding hazards on flood hazard. All these hazards are individually affected by climate change, additionally complicating the interactions within the cascade. By estimating and analyzing the burn severity, rainfall magnitude, soil erosion and stream turbidity in differently affected tributaries of the Manning River catchment, the third study shows that even low magnitude floods can pose a substantial hazard within a cascade. This thesis shows that humanity is affecting flood hazard in multiple ways with spatially and temporarily varying consequences, many of which were previously neglected (e.g. flood synchrony scale, hazard cascades). To allow for informed decision making in risk management and climate change adaptation, it will be crucial to study these aspects across the globe and to project their trajectories into the future. The presented methods can depict the complex interactions of different flood drivers and their spatial variability, providing a basis for the assessment of future flood hazard changes. The role of land cover should be considered more in future flood risk modelling and management studies, while holistic, transferable frameworks for hazard cascade assessment will need to be designed.}, language = {en} } @phdthesis{SamprognaMohor2022, author = {Samprogna Mohor, Guilherme}, title = {Exploring the transferability of flood loss models across flood types}, doi = {10.25932/publishup-55714}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-557141}, school = {Universit{\"a}t Potsdam}, pages = {XXIV, 182}, year = {2022}, abstract = {The estimation of financial losses is an integral part of flood risk assessment. The application of existing flood loss models on locations or events different from the ones used to train the models has led to low performance, showing that characteristics of the flood damaging process have not been sufficiently well represented yet. To improve flood loss model transferability, I explore various model structures aiming at incorporating different (inland water) flood types and pathways. That is based on a large survey dataset of approximately 6000 flood-affected households which addresses several aspects of the flood event, not only the hazard characteristics but also information on the affected building, socioeconomic factors, the household's preparedness level, early warning, and impacts. Moreover, the dataset reports the coincidence of different flood pathways. Whilst flood types are a classification of flood events reflecting their generating process (e.g. fluvial, pluvial), flood pathways represent the route the water takes to reach the receptors (e.g. buildings). In this work, the following flood pathways are considered: levee breaches, river floods, surface water floods, and groundwater floods. The coincidence of several hazard processes at the same time and place characterises a compound event. In fact, many flood events develop through several pathways, such as the ones addressed in the survey dataset used. Earlier loss models, although developed with one or multiple predictor variables, commonly use loss data from a single flood event which is attributed to a single flood type, disregarding specific flood pathways or the coincidence of multiple pathways. This gap is addressed by this thesis through the following research questions: 1. In which aspects do flood pathways of the same (compound inland) flood event differ? 2. How much do factors which contribute to the overall flood loss in a building differ in various settings, specifically across different flood pathways? 3. How well can Bayesian loss models learn from different settings? 4. Do compound, that is, coinciding flood pathways result in higher losses than a single pathway, and what does the outcome imply for future loss modelling? Statistical analysis has found that households affected by different flood pathways also show, in general, differing characteristics of the affected building, preparedness, and early warning, besides the hazard characteristics. Forecasting and early warning capabilities and the preparedness of the population are dominated by the general flood type, but characteristics of the hazard at the object-level, the impacts, and the recovery are more related to specific flood pathways, indicating that risk communication and loss models could benefit from the inclusion of flood-pathway-specific information. For the development of the loss model, several potentially relevant predictors are analysed: water depth, duration, velocity, contamination, early warning lead time, perceived knowledge about self-protection, warning information, warning source, gap between warning and action, emergency measures, implementation of property-level precautionary measures (PLPMs), perceived efficacy of PLPMs, previous flood experience, awareness of flood risk, ownership, building type, number of flats, building quality, building value, house/flat area, building area, cellar, age, household size, number of children, number of elderly residents, income class, socioeconomic status, and insurance against floods. After a variable selection, descriptors of the hazard, building, and preparedness were deemed significant, namely: water depth, contamination, duration, velocity, building area, building quality, cellar, PLPMs, perceived efficacy of PLPMs, emergency measures, insurance, and previous flood experience. The inclusion of the indicators of preparedness is relevant, as they are rarely involved in loss datasets and in loss modelling, although previous studies have shown their potential in reducing losses. In addition, the linear model fit indicates that the explanatory factors are, in several cases, differently relevant across flood pathways. Next, Bayesian multilevel models were trained, which intrinsically incorporate uncertainties and allow for partial pooling (i.e. different groups of data, such as households affected by different flood pathways, can learn from each other), increasing the statistical power of the model. A new variable selection was performed for this new model approach, reducing the number of predictors from twelve to seven variables but keeping factors of the hazard, building, and preparedness, namely: water depth, contamination, duration, building area, PLPMs, insurance, and previous flood experience. The new model was trained not only across flood pathways but also across regions of Germany, divided according to general socioeconomic factors and insurance policies, and across flood events. The distinction across regions and flood events did not improve loss modelling and led to a large overlap of regression coefficients, with no clear trend or pattern. The distinction of flood pathways showed credibly distinct regression coefficients, leading to a better understanding of flood loss modelling and indicating one potential reason why model transferability has been challenging. Finally, new model structures were trained to include the possibility of compound inland floods (i.e. when multiple flood pathways coincide on the same affected asset). The dataset does not allow for verifying in which sequence the flood pathway waves occurred and predictor variables reflect only their mixed or combined outcome. Thus, two Bayesian models were trained: 1. a multi-membership model, a structure which learns the regression coefficients for multiple flood pathways at the same time, and 2. a multilevel model wherein the combination of coinciding flood pathways makes individual categories. The multi-membership model resulted in credibly different coefficients across flood pathways but did not improve model performance in comparison to the model assuming only a single dominant flood pathway. The model with combined categories signals an increase in impacts after compound floods, but due to the uncertainty in model coefficients and estimates, it is not possible to ascertain such an increase as credible. That is, with the current level of uncertainty in differentiating the flood pathways, the loss estimates are not credibly distinct from individual flood pathways. To overcome the challenges faced, non-linear or mixed models could be explored in the future. Interactions, moderation, and mediation effects, as well as non-linear effects, should also be further studied. Loss data collection should regularly include preparedness indicators, and either data collection or hydraulic modelling should focus on the distinction of coinciding flood pathways, which could inform loss models and further improve estimates. Flood pathways show distinct (financial) impacts, and their inclusion in loss modelling proves relevant, for it helps in clarifying the different contribution of influencing factors to the final loss, improving understanding of the damaging process, and indicating future lines of research.}, language = {en} } @phdthesis{Aich2015, author = {Aich, Valentin}, title = {Floods in the Niger River Basin in the face of global change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91577}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 275}, year = {2015}, abstract = {In the last decade, the number and dimensions of catastrophic flooding events in the Niger River Basin (NRB) have markedly increased. Despite the devastating impact of the floods on the population and the mainly agriculturally based economy of the riverine nations, awareness of the hazards in policy and science is still low. The urgency of this topic and the existing research deficits are the motivation for the present dissertation. The thesis is an initial detailed assessment of the increasing flood risk in the NRB. The research strategy is based on four questions regarding (1) features of the change in flood risk, (2) reasons for the change in the flood regime, (3) expected changes of the flood regime given climate and land use changes, and (4) recommendations from previous analysis for reducing the flood risk in the NRB. The question examining the features of change in the flood regime is answered by means of statistical analysis. Trend, correlation, changepoint, and variance analyses show that, in addition to the factors exposure and vulnerability, the hazard itself has also increased significantly in the NRB, in accordance with the decadal climate pattern of West Africa. The northern arid and semi-arid parts of the NRB are those most affected by the changes. As potential reasons for the increase in flood magnitudes, climate and land use changes are attributed by means of a hypothesis-testing framework. Two different approaches, based on either data analysis or simulation, lead to similar results, showing that the influence of climatic changes is generally larger compared to that of land use changes. Only in the dry areas of the NRB is the influence of land use changes comparable to that of climatic alterations. Future changes of the flood regime are evaluated using modelling results. First ensembles of statistically and dynamically downscaled climate models based on different emission scenarios are analyzed. The models agree with a distinct increase in temperature. The precipitation signal, however, is not coherent. The climate scenarios are used to drive an eco-hydrological model. The influence of climatic changes on the flood regime is uncertain due to the unclear precipitation signal. Still, in general, higher flood peaks are expected. In a next step, effects of land use changes are integrated into the model. Different scenarios show that regreening might help to reduce flood peaks. In contrast, an expansion of agriculture might enhance the flood peaks in the NRB. Similarly to the analysis of observed changes in the flood regime, the impacts of climate- and land use changes for the future scenarios are also most severe in the dry areas of the NRB. In order to answer the final research question, the results of the above analysis are integrated into a range of recommendations for science and policy on how to reduce flood risk in the NRB. The main recommendations include a stronger consideration of the enormous natural climate variability in the NRB and a focus on so called "no-regret" adaptation strategies which account for high uncertainty, as well as a stronger consideration of regional differences. Regarding the prevention and mitigation of catastrophic flooding, the most vulnerable and sensitive areas in the basin, the arid and semi-arid Sahelian and Sudano-Sahelian regions, should be prioritized. Eventually, an active, science-based and science-guided flood policy is recommended. The enormous population growth in the NRB in connection with the expected deterioration of environmental and climatic conditions is likely to enhance the regionĀ“s vulnerability to flooding. A smart and sustainable flood policy can help mitigate these negative impacts of flooding on the development of riverine societies in West Africa.}, language = {en} }