@phdthesis{Wang2020, author = {Wang, Weishi}, title = {Influence of river reconstruction at a bank filtration site}, doi = {10.25932/publishup-49023}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-490234}, school = {Universit{\"a}t Potsdam}, pages = {IIV, 120}, year = {2020}, abstract = {Bank filtration is an effective water treatment technique and is widely adopted in Europe along major rivers. It is the process where surface water penetrates the riverbed, flows through the aquifer, and then is extracted by near-bank production wells. By flowing in the subsurface flow passage, the water quality can be improved by a series of beneficial processes. Long-term riverbank filtration also produces colmation layers on the riverbed. The colmation layer may act as a bioactive zone that is governed by biochemical and physical processes owing to its enrichment of microbes and organic matter. Low permeability may strongly limit the surface water infiltration and further lead to a decreasing recoverable ratio of production wells.The removal of the colmation layer is therefore a trade-off between the treatment capacity and treatment efficiency. The goal of this Ph.D. thesis is to focus on the temporal and spatial change of the water quality and quantity along the flow path of a hydrogeological heterogeneous riverbank filtration site adjacent to an artificial-reconstructed (bottom excavation and bank reconstruction) canal in Potsdam, Germany. To quantify the change of the infiltration rate, travel time distribution, and the thermal field brought by the canal reconstruction, a three-dimensional flow and heat transport model was created. This model has two scenarios, 1) 'with' canal reconstruction, and 2) 'without' canal reconstruction. Overall, the model calibration results of both water heads and temperatures matched those observed in the field study. In comparison to the model without reconstruction, the reconstruction model led to more water being infiltrated into the aquifer on that section, on average 521 m3/d, which corresponded to around 9\% of the total pumping rate. Subsurface travel-time distribution substantially shifted towards shorter travel times. Flow paths with travel times <200 days increased by ~10\% and those with <300 days by 15\%. Furthermore, the thermal distribution in the aquifer showed that the seasonal variation in the scenario with reconstruction reaches deeper and laterally propagates further. By scatter plotting of δ18O versus δ 2H, the infiltrated river water could be differentiated from water flowing in the deep aquifer, which may contain remnant landside groundwater from further north. In contrast, the increase of river water contribution due to decolmation could be shown by piper plot. Geological heterogeneity caused a substantial spatial difference in redox zonation among different flow paths, both horizontally and vertically. Using the Wilcoxon rank test, the reconstruction changed the redox potential differently in observation wells. However, taking the small absolute concentration level, the change is also relatively minor. The treatment efficiency for both organic matter and inorganic matter is consistent after the reconstruction, except for ammonium. The inconsistent results for ammonium could be explained by changes in the Cation Exchange Capacity (CEC) in the newly paved riverbed. Because the bed is new, it was not yet capable of keeping the newly produced ammonium by sorption and further led to the breakthrough of the ammonium plume. By estimation, the peak of the ammonium plume would reach the most distant observation well before February 2024, while the peaking concentration could be further dampened by sorption and diluted by the afterward low ammonium flow. The consistent DOC and SUVA level suggests that there was no clear preference for the organic matter removal along the flow path.}, language = {en} } @phdthesis{Koc2018, author = {Ko{\c{c}}, Azize}, title = {Ultrafast x-ray studies on the non-equilibrium of the magnetic and phononic system in heavy rare-earths}, doi = {10.25932/publishup-42328}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423282}, school = {Universit{\"a}t Potsdam}, pages = {ii, 117}, year = {2018}, abstract = {In this dissertation the lattice and the magnetic recovery dynamics of the two heavy rare-earth metals Dy and Gd after femtosecond photoexcitation are described. For the investigations, thin films of Dy and Gd were measured at low temperatures in the antiferromagnetic phase of Dy and close to room temperature in the ferromagnetic phase of Gd. Two different optical pump-x-ray probe techniques were employed: Ultrafast x-ray diffraction with hard x-rays (UXRD) yields the structural response of heavy rare-earth metals and resonant soft (elastic) x-ray diffraction (RSXD), which allows measuring directly changes in the helical antiferromagnetic order of Dy. The combination of both techniques enables to study the complex interaction between the magnetic and the phononic subsystems.}, language = {en} } @phdthesis{Munz2017, author = {Munz, Matthias}, title = {Water flow and heat transport modelling at the interface between river and aquifer}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404319}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 123}, year = {2017}, abstract = {The functioning of the surface water-groundwater interface as buffer, filter and reactive zone is important for water quality, ecological health and resilience of streams and riparian ecosystems. Solute and heat exchange across this interface is driven by the advection of water. Characterizing the flow conditions in the streambed is challenging as flow patterns are often complex and multidimensional, driven by surface hydraulic gradients and groundwater discharge. This thesis presents the results of an integrated approach of studies, ranging from the acquisition of field data, the development of analytical and numerical approaches to analyse vertical temperature profiles to the detailed, fully-integrated 3D numerical modelling of water and heat flux at the reach scale. All techniques were applied in order to characterize exchange flux between stream and groundwater, hyporheic flow paths and temperature patterns. The study was conducted at a reach-scale section of the lowland Selke River, characterized by distinctive pool riffle sequences and fluvial islands and gravel bars. Continuous time series of hydraulic heads and temperatures were measured at different depths in the river bank, the hyporheic zone and within the river. The analyses of the measured diurnal temperature variation in riverbed sediments provided detailed information about the exchange flux between river and groundwater. Beyond the one-dimensional vertical water flow in the riverbed sediment, hyporheic and parafluvial flow patterns were identified. Subsurface flow direction and magnitude around fluvial islands and gravel bars at the study site strongly depended on the position around the geomorphological structures and on the river stage. Horizontal water flux in the streambed substantially impacted temperature patterns in the streambed. At locations with substantial horizontal fluxes the penetration depths of daily temperature fluctuations was reduced in comparison to purely vertical exchange conditions. The calibrated and validated 3D fully-integrated model of reach-scale water and heat fluxes across the river-groundwater interface was able to accurately represent the real system. The magnitude and variations of the simulated temperatures matched the observed ones, with an average mean absolute error of 0.7 °C and an average Nash Sutcliffe Efficiency of 0.87. The simulation results showed that the water and heat exchange at the surface water-groundwater interface is highly variable in space and time with zones of daily temperature oscillations penetrating deep into the sediment and spots of daily constant temperature following the average groundwater temperature. The average hyporheic flow path temperature was found to strongly correlate with the flow path residence time (flow path length) and the temperature gradient between river and groundwater. Despite the complexity of these processes, the simulation results allowed the derivation of a general empirical relationship between the hyporheic residence times and temperature patterns. The presented results improve our understanding of the complex spatial and temporal dynamics of water flux and thermal processes within the shallow streambed. Understanding these links provides a general basis from which to assess hyporheic temperature conditions in river reaches.}, language = {en} }