@phdthesis{Stanke2023, author = {Stanke, Sandra}, title = {AC electrokinetic immobilization of influenza viruses and antibodies on nanoelectrode arrays for on-chip immunoassays}, doi = {10.25932/publishup-61716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617165}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2023}, abstract = {In the present thesis, AC electrokinetic forces, like dielectrophoresis and AC electroosmosis, were demonstrated as a simple and fast method to functionalize the surface of nanoelectrodes with submicrometer sized biological objects. These nanoelectrodes have a cylindrical shape with a diameter of 500 nm arranged in an array of 6256 electrodes. Due to its medical relevance influenza virus as well as anti-influenza antibodies were chosen as a model organism. Common methods to bring antibodies or proteins to biosensor surfaces are complex and time-consuming. In the present work, it was demonstrated that by applying AC electric fields influenza viruses and antibodies can be immobilized onto the nanoelectrodes within seconds without any prior chemical modification of neither the surface nor the immobilized biological object. The distribution of these immobilized objects is not uniform over the entire array, it exhibits a decreasing gradient from the outer row to the inner ones. Different causes for this gradient have been discussed, such as the vortex-shaped fluid motion above the nanoelectrodes generated by, among others, electrothermal fluid flow. It was demonstrated that parts of the accumulated material are permanently immobilized to the electrodes. This is a unique characteristic of the presented system since in the literature the AC electrokinetic immobilization is almost entirely presented as a method just for temporary immobilization. The spatial distribution of the immobilized viral material or the anti-influenza antibodies at the electrodes was observed by either the combination of fluorescence microscopy and deconvolution or by super-resolution microscopy (STED). On-chip immunoassays were performed to examine the suitability of the functionalized electrodes as a potential affinity-based biosensor. Two approaches were pursued: A) the influenza virus as the bio-receptor or B) the influenza virus as the analyte. Different sources of error were eliminated by ELISA and passivation experiments. Hence, the activity of the immobilized object was inspected by incubation with the analyte. This resulted in the successful detection of anti-influenza antibodies by the immobilized viral material. On the other hand, a detection of influenza virus particles by the immobilized anti-influenza antibodies was not possible. The latter might be due to lost activity or wrong orientation of the antibodies. Thus, further examinations on the activity of by AC electric fields immobilized antibodies should follow. When combined with microfluidics and an electrical read-out system, the functionalized chips possess the potential to serve as a rapid, portable, and cost-effective point-of-care (POC) device. This device can be utilized as a basis for diverse applications in diagnosing and treating influenza, as well as various other pathogens.}, language = {en} } @phdthesis{Moeser2021, author = {M{\"o}ser, Christin}, title = {Modular DNA constructs for oligovalent bio-enhancement and functional screening}, doi = {10.25932/publishup-50728}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-507289}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 148}, year = {2021}, abstract = {Deoxyribonucleic acid (DNA) nanostructures enable the attachment of functional molecules to nearly any unique location on their underlying structure. Due to their single-base-pair structural resolution, several ligands can be spatially arranged and closely controlled according to the geometry of their desired target, resulting in optimized binding and/or signaling interactions. This dissertation covers three main projects. All of them use variations of functionalized DNA nanostructures that act as platform for oligovalent presentation of ligands. The purpose of this work was to evaluate the ability of DNA nanostructures to precisely display different types of functional molecules and to consequently enhance their efficacy according to the concept of multivalency. Moreover, functionalized DNA structures were examined for their suitability in functional screening assays. The developed DNA-based compound ligands were used to target structures in different biological systems. One part of this dissertation attempted to bind pathogens with small modified DNA nanostructures. Pathogens like viruses and bacteria are known for their multivalent attachment to host cells membranes. By blocking their receptors for recognition and/or fusion with their targeted host in an oligovalent manner, the objective was to impede their ability to adhere to and invade cells. For influenza A, only enhanced binding of oligovalent peptide-DNA constructs compared to the monovalent peptide could be observed, whereas in the case of respiratory syncytial virus (RSV), binding as well as blocking of the target receptors led to an increased inhibition of infection in vitro. In the final part, the ability of chimeric DNA-peptide constructs to bind to and activate signaling receptors on the surface of cells was investigated. Specific binding of DNA trimers, conjugated with up to three peptides, to EphA2 receptor expressing cells was evaluated in flow cytometry experiments. Subsequently, their ability to activate these receptors via phosphorylation was assessed. EphA2 phosphorylation was significantly increased by DNA trimers carrying three peptides compared to monovalent peptide. As a result of activation, cells underwent characteristic morphological changes, where they "round up" and retract their periphery. The results obtained in this work comprehensively prove the capability of DNA nanostructures to serve as stable, biocompatible, controllable platforms for the oligovalent presentation of functional ligands. Functionalized DNA nanostructures were used to enhance biological effects and as tool for functional screening of bio-activity. This work demonstrates that modified DNA structures have the potential to improve drug development and to unravel the activation of signaling pathways.}, language = {en} } @phdthesis{Memczak2014, author = {Memczak, Henry}, title = {Entwicklung influenzabindender Peptide f{\"u}r die Biosensorik}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-72470}, school = {Universit{\"a}t Potsdam}, pages = {X, 117}, year = {2014}, abstract = {Das Influenzavirus infiziert S{\"a}ugetiere und V{\"o}gel. Der erste Schritt im Infektionszyklus ist die Anbindung des Viruses {\"u}ber sein Oberfl{\"a}chenprotein H{\"a}magglutinin (HA) an Zuckerstrukturen auf Epithelzellen des respiratorischen Traktes im Wirtsorganismus. Aus den drei komplementarit{\"a}tsbestimmenden Regionen (complementarity determining regions, CDRs) der schweren Kette eines monoklonalen H{\"a}magglutinin-bindenden Antik{\"o}rpers wurden drei lineare Peptide abgeleitet. Die Bindungseigenschaften der drei Peptide wurden experimentell mittels Oberfl{\"a}chenplasmonenresonanzspektroskopie untersucht. Es zeigte sich, dass in {\"U}bereinstimmung mit begleitenden Molekulardynamik-Simulationen zwei der drei Peptide (PeB und PeC) analog zur Bindef{\"a}higkeit des Antik{\"o}rpers in der Lage sind, Influenzaviren vom Stamm X31 (H3N2 A/Aichi/2/1968) zu binden. Die Interaktion des Peptids PeB, welches potentiell mit der konservierten Rezeptorbindestelle im HA interagiert, wurde anschließend n{\"a}her charakterisiert. Die Detektion der Influenzaviren war unter geeigneten Immobilisationsbedingungen im diagnostisch relevanten Bereich m{\"o}glich. Die Spezifit{\"a}t der PeB-Virus-Bindung wurde mittels geeigneter Kontrollen auf der Seite des Analyten und des Liganden nachgewiesen. Des Weiteren war das Peptid PeB in der Lage die Bindung von X31-Viren an Mimetika seines nat{\"u}rlichen Rezeptors zu inhibieren, was die spezifische Interaktion mit der Rezeptorbindungsstelle im H{\"a}magglutinin belegt. Anschließend wurde die Prim{\"a}rsequenz von PeB durch eine vollst{\"a}ndige Substitutionsanalyse im Microarray-Format hinsichtlich der Struktur-Aktivit{\"a}ts-Beziehungen charakterisiert. Dies f{\"u}hrte außerdem zu verbesserten Peptidvarianten mit erh{\"o}hter Affinit{\"a}t und breiterer Spezifit{\"a}t gegen aktuelle Influenzast{\"a}mme verschiedener Serotypen (z.B. H1N1/2009, H5N1/2004, H7N1/2013). Schließlich konnte durch Verwendung einer in der Prim{\"a}rsequenz angepassten h{\"o}her affinen Peptidvariante die Influenzainfektion in vitro inhibiert werden. Damit stellen die vom urspr{\"u}nglichen Peptid PeB abgeleiteten Varianten Rezeptormolek{\"u}le in biosensorischen Testsystemen sowie potentielle Wirkstoffe dar.}, language = {de} }