@phdthesis{Kolasa2005, author = {Kolasa, Anna}, title = {Identification and analysis of new phloem proteins from Brassicaceae and Cucurbitaceae}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6939}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The major aim of this work was the identification of new phloem sap proteins and a metabolic characterisation of this transport fluid. The experiments were performed on the three plant species C. sativus, C. maxima and B. napus. To characterise the phloem samples from B. napus, a new model plant for phloem analysis, western blot tests together with metabolite profiling were performed. GC-MS metabolite profiling and enzyme assays were used for measuring metabolites in the phloem of B. napus. Results from the phloem sap measurements showed, as expected, a typical sugar distribution for apoplasmic phloem loaders with sucrose being the predominant sugar. In stem extracts, the most abundant sugar was glucose with much lower fructose and sucrose levels. With the GC-MS approach it was possible to identify a number of metabolites which showed a differential distribution when phloem and stem tissue extracts were compared. For protein identification, two different approaches were employed (i) screening expression libraries with total phloem protein specific antisera and (ii) protein separation on 2 DE gels followed by ESI-MS/MS sequence analyses. For the first approach, three different phloem protein-specific antisera were produced and expression libraries were constructed. Phloem protein antisera were tested for specificity and some attempts to estimate specific epitopes were undertaken. Screening of the libraries resulted in the identification of 14 different proteins from all investigated species. Analyses of B. napus phloem sap proteins from 2 DE with ESI-MS/MS resulted in the identification of 5 different proteins. The phloem localisation of the identified proteins was additionally confirmed by western blot tests using specific antibodies. In order to functionally characterise some selected phloem proteins from B. napus, the group of potential calcium-binding polypeptides was analysed for functional Ca+2 binding properties and several Ca+2-binding proteins could be isolated. However, their sequences could as yet not be determined. Another approach used for functional protein characterisation was the analysis of Arabidopsis T-DNA insertion mutants. Four available mutants with insertions in phloem protein-specific genes were chosen from the SALK and GABI-Kat collections and selected homozygous lines were tested for the presence of the investigated proteins. In order to verify if the product of one of the mutated gene (GRP 7) is transported through the phloem, grafting experiments were performed followed by western blot analyses. Although the employed antiserum against GRP 7 protein did not allow distinguishing between the mutant and the wild type plants, successful Arabidopsis grafting could be established as a promising method for further studies on protein translocation through the phloem.}, subject = {Phloemproteine}, language = {en} }