@phdthesis{Pellegrino2022, author = {Pellegrino, Antonio}, title = {miRNA profiling for diagnosis of chronic pain in polyneuropathy}, doi = {10.25932/publishup-58385}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583858}, school = {Universit{\"a}t Potsdam}, pages = {viii, 97, xi}, year = {2022}, abstract = {This dissertation aimed to determine differential expressed miRNAs in the context of chronic pain in polyneuropathy. For this purpose, patients with chronic painful polyneuropathy were compared with age matched healthy patients. Taken together, all miRNA pre library preparation quality controls were successful and none of the samples was identified as an outlier or excluded for library preparation. Pre sequencing quality control showed that library preparation worked for all samples as well as that all samples were free of adapter dimers after BluePippin size selection and reached the minimum molarity for further processing. Thus, all samples were subjected to sequencing. The sequencing control parameters were in their optimal range and resulted in valid sequencing results with strong sample to sample correlation for all samples. The resulting FASTQ file of each miRNA library was analyzed and used to perform a differential expression analysis. The differentially expressed and filtered miRNAs were subjected to miRDB to perform a target prediction. Three of those four miRNAs were downregulated: hsa-miR-3135b, hsa-miR-584-5p and hsa-miR-12136, while one was upregulated: hsa-miR-550a-3p. miRNA target prediction showed that chronic pain in polyneuropathy might be the result of a combination of miRNA mediated high blood flow/pressure and neural activity dysregulations/disbalances. Thus, leading to the promising conclusion that these four miRNAs could serve as potential biomarkers for the diagnosis of chronic pain in polyneuropathy. Since TRPV1 seems to be one of the major contributors of nociception and is associated with neuropathic pain, the influence of PKA phosphorylated ARMS on the sensitivity of TRPV1 as well as the part of AKAP79 during PKA phosphorylation of ARMS was characterized. Therefore, possible PKA-sites in the sequence of ARMS were identified. This revealed five canonical PKA-sites: S882, T903, S1251/52, S1439/40 and S1526/27. The single PKA-site mutants of ARMS revealed that PKA-mediated ARMS phosphorylation seems not to influence the interaction rate of TRPV1/ARMS. While phosphorylation of ARMST903 does not increase the interaction rate with TRPV1, ARMSS1526/27 is probably not phosphorylated and leads to an increased interaction rate. The calcium flux measurements indicated that the higher the interaction rate of TRPV1/ARMS, the lower the EC50 for capsaicin of TRPV1, independent of the PKA phosphorylation status of ARMS. In addition, the western blot analysis confirmed the previously observed TRPV1/ARMS interaction. More importantly, AKAP79 seems to be involved in the TRPV1/ARMS/PKA signaling complex. To overcome the problem of ARMS-mediated TRPV1 sensitization by interaction, ARMS was silenced by shRNA. ARMS silencing resulted in a restored TRPV1 desensitization without affecting the TRPV1 expression and therefore could be used as new topical therapeutic analgesic alternative to stop ARMS mediated TRPV1 sensitization.}, language = {en} } @phdthesis{Siegmund2022, author = {Siegmund, Nicole}, title = {Wind driven soil particle uptake Quantifying drivers of wind erosion across the particle size spectrum}, doi = {10.25932/publishup-57489}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574897}, school = {Universit{\"a}t Potsdam}, pages = {ix, 56}, year = {2022}, abstract = {Among the multitude of geomorphological processes, aeolian shaping processes are of special character, Pedogenic dust is one of the most important sources of atmospheric aerosols and therefore regarded as a key player for atmospheric processes. Soil dust emissions, being complex in composition and properties, influence atmospheric processes and air quality and has impacts on other ecosystems. In this because even though their immediate impact can be considered low (exceptions exist), their constant and large-scale force makes them a powerful player in the earth system. dissertation, we unravel a novel scientific understanding of this complex system based on a holistic dataset acquired during a series of field experiments on arable land in La Pampa, Argentina. The field experiments as well as the generated data provide information about topography, various soil parameters, the atmospheric dynamics in the very lower atmosphere (4m height) as well as measurements regarding aeolian particle movement across a wide range of particle size classes between 0.2μm up to the coarse sand. The investigations focus on three topics: (a) the effects of low-scale landscape structures on aeolian transport processes of the coarse particle fraction, (b) the horizontal and vertical fluxes of the very fine particles and (c) the impact of wind gusts on particle emissions. Among other considerations presented in this thesis, it could in particular be shown, that even though the small-scale topology does have a clear impact on erosion and deposition patterns, also physical soil parameters need to be taken into account for a robust statistical modelling of the latter. Furthermore, specifically the vertical fluxes of particulate matter have different characteristics for the particle size classes. Finally, a novel statistical measure was introduced to quantify the impact of wind gusts on the particle uptake and its application on the provided data set. The aforementioned measure shows significantly increased particle concentrations during points in time defined as gust event. With its holistic approach, this thesis further contributes to the fundamental understanding of how atmosphere and pedosphere are intertwined and affect each other.}, language = {en} } @phdthesis{Simsek2022, author = {Simsek, Ibrahim}, title = {Ink-based preparation of chalcogenide perovskites as thin films for PV applications}, doi = {10.25932/publishup-57271}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572711}, school = {Universit{\"a}t Potsdam}, pages = {iv, 113}, year = {2022}, abstract = {The increasing demand for energy in the current technological era and the recent political decisions about giving up on nuclear energy diverted humanity to focus on alternative environmentally friendly energy sources like solar energy. Although silicon solar cells are the product of a matured technology, the search for highly efficient and easily applicable materials is still ongoing. These properties made the efficiency of halide perovskites comparable with silicon solar cells for single junctions within a decade of research. However, the downside of halide perovskites are poor stability and lead toxicity for the most stable ones. On the other hand, chalcogenide perovskites are one of the most promising absorber materials for the photovoltaic market, due to their elemental abundance and chemical stability against moisture and oxygen. In the search of the ultimate solar absorber material, combining the good optoelectronic properties of halide perovskites with the stability of chalcogenides could be the promising candidate. Thus, this work investigates new techniques for the synthesis and design of these novel chalcogenide perovskites, that contain transition metals as cations, e.g., BaZrS3, BaHfS3, EuZrS3, EuHfS3 and SrHfS3. There are two stages in the deposition techniques of this study: In the first stage, the binary compounds are deposited via a solution processing method. In the second stage, the deposited materials are annealed in a chalcogenide atmosphere to form the perovskite structure by using solid-state reactions. The research also focuses on the optimization of a generalized recipe for a molecular ink to deposit precursors of chalcogenide perovskites with different binaries. The implementation of the precursor sulfurization resulted in either binaries without perovskite formation or distorted perovskite structures, whereas some of these materials are reported in the literature as they are more favorable in the needle-like non-perovskite configuration. Lastly, there are two categories for the evaluation of the produced materials: The first category is about the determination of the physical properties of the deposited layer, e.g., crystal structure, secondary phase formation, impurities, etc. For the second category, optoelectronic properties are measured and compared to an ideal absorber layer, e.g., band gap, conductivity, surface photovoltage, etc.}, language = {en} } @phdthesis{Gunold2022, author = {Gunold, Sascha}, title = {Abzug unter Beobachtung}, doi = {10.25932/publishup-57197}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571977}, school = {Universit{\"a}t Potsdam}, pages = {391}, year = {2022}, abstract = {Mehr als vier Jahrzehnte lang beobachteten die Streitkr{\"a}fte und Milit{\"a}rnachrichtendienste der NATO-Staaten die sowjetischen Truppen in der DDR. Hierf{\"u}r {\"u}bernahm in der Bundesrepublik Deutschland der Bundesnachrichtendienst (BND) die milit{\"a}rische Auslandsaufkl{\"a}rung unter Anwendung nachrichtendienstlicher Mittel und Methoden. Die Bundeswehr betrieb dagegen taktische Fernmelde- und elektronische Aufkl{\"a}rung und h{\"o}rte vor allem den Funkverkehr der „Gruppe der sowjetischen Streitkr{\"a}fte in Deutschland" (GSSD) ab. Mit der Aufstellung einer zentralen Dienststelle f{\"u}r das milit{\"a}rische Nachrichtenwesen, dem Amt f{\"u}r Nachrichtenwesen der Bundeswehr, b{\"u}ndelte und erweiterte zugleich das Bundesministerium f{\"u}r Verteidigung in den 1980er Jahren seine analytischen Kapazit{\"a}ten. Das Monopol des BND in der milit{\"a}rischen Auslandsaufkl{\"a}rung wurde von der Bundeswehr dadurch zunehmend infrage gestellt. Nach der deutschen Wiedervereinigung am 3. Oktober 1990 befanden sich immer noch mehr als 300.000 sowjetische Soldaten auf deutschem Territorium. Die 1989 in Westgruppe der Truppen (WGT) umbenannte GSSD sollte - so der Zwei-plus-Vier-Vertrag - bis 1994 vollst{\"a}ndig abziehen. Der Vertrag verbot auch den drei Westm{\"a}chten, in den neuen Bundesl{\"a}ndern milit{\"a}risch t{\"a}tig zu sein. Die f{\"u}r die Milit{\"a}raufkl{\"a}rung bis dahin unverzichtbaren Milit{\"a}rverbindungsmissionen der Westm{\"a}chte mussten ihre Dienste einstellen. Doch was geschah mit diesem „alliierten Erbe"? Wer {\"u}bernahm auf deutscher Seite die Aufkl{\"a}rung der sowjetischen Truppen und wer kontrollierte den Truppenabzug?  Die Studie untersucht die Rolle von Bundeswehr und BND beim Abzug der WGT zwischen 1990 und 1994 und fragt dabei nach Kooperation und Konkurrenz zwischen Streitkr{\"a}ften und Nachrichtendiensten. Welche milit{\"a}rischen und nachrichtendienstlichen Mittel und F{\"a}higkeiten stellte die Bundesregierung zur Bew{\"a}ltigung des Truppenabzugs zur Verf{\"u}gung, nachdem die westlichen Milit{\"a}rverbindungsmissionen aufgel{\"o}st wurden? Wie ver{\"a}nderten sich die Anforderungen an die milit{\"a}rische Auslandsaufkl{\"a}rung des BND? Inwieweit setzten sich Konkurrenz und Kooperation von Bundeswehr und BNDbeim Truppenabzug fort? Welche Rolle spielten dabei die einstigen Westm{\"a}chte? Die Arbeit versteht sich nicht nur als Beitrag zur Milit{\"a}rgeschichte, sondern auch zur deutschen Nachrichtendienstgeschichte.}, language = {de} } @phdthesis{Folikumah2022, author = {Folikumah, Makafui Yao}, title = {Stimuli-promoted in situ formation of hydrogels with thiol/thioester containing peptide precursors}, doi = {10.25932/publishup-56971}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569713}, school = {Universit{\"a}t Potsdam}, pages = {159}, year = {2022}, abstract = {Hydrogels are potential synthetic ECM-like substitutes since they provide functional and structural similarities compared to soft tissues. They can be prepared by crosslinking of macromolecules or by polymerizing suitable precursors. The crosslinks are not necessarily covalent bonds, but could also be formed by physical interactions such as π-π interactions, hydrophobic interactions, or H-bonding. On demand in situ forming hydrogels have garnered increased interest especially for biomedical applications over preformed gels due to the relative ease of in vivo delivery and filling of cavities. The thiol-Michael addition reaction provides a straightforward and robust strategy for in situ gel formation with its fast reaction kinetics and ability to proceed under physiological conditions. The incorporation of a trigger function into a crosslinking system becomes even more interesting since gelling can be controlled with stimulus of choice. The use of small molar mass crosslinker precursors with active groups orthogonal to thiol-Michael reaction type electrophile provides the opportunity to implement an on-demand in situ crosslinking without compromising the fast reaction kinetics. It was postulated that short peptide sequences due to the broad range structural-function relations available with the different constituent amino acids, can be exploited for the realisation of stimuli-promoted in situ covalent crosslinking and gelation applications. The advantages of this system over conventional polymer-polymer hydrogel systems are the ability tune and predict material property at the molecular level. The main aim of this work was to develop a simplified and biologically-friendly stimuli-promoted in situ crosslinking and hydrogelation system using peptide mimetics as latent crosslinkers. The approach aims at using a single thiodepsipeptide sequence to achieve separate pH- and enzyme-promoted gelation systems with little modification to the thiodepsipeptide sequence. The realization of this aim required the completion of three milestones. In the first place, after deciding on the thiol-Michael reaction as an effective in situ crosslinking strategy, a thiodepsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) with expected propensity towards pH-dependent thiol-thioester exchange (TTE) activation, was proposed as a suitable crosslinker precursor for pH-promoted gelation system. Prior to the synthesis of the proposed peptide-mimetic, knowledge of the thiol-Michael reactivity of the would-be activated thiol moiety SH-Leu, which is internally embedded in the thiodepsipeptide was required. In line with pKa requirements for a successful TTE, the reactivity of a more acidic thiol, SH-Phe was also investigated to aid the selection of the best thiol to be incorporated in the thioester bearing peptide based crosslinker precursor. Using 'pseudo' 2D-NMR investigations, it was found that only reactions involving SH-Leu yielded the expected thiol-Michael product, an observation that was attributed to the steric hindrance of the bulkier nature of SH-Phe. The fast reaction rates and complete acrylate/maleimide conversion obtained with SH-Leu at pH 7.2 and higher aided the direct elimination of SH-Phe as a potential thiol for the synthesis of the peptide mimetic. Based on the initial studies, for the pH-promoted gelation system, the proposed Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH was kept unmodified. The subtle difference in pKa values between SH-Leu (thioester thiol) and the terminal cysteamine thiol from theoretical conditions should be enough to effect a 'pseudo' intramolecular TTE. In polar protic solvents and under basic aqueous conditions, TDP successfully undergoes a 'pseudo' intramolecular TTE reaction to yield an α,ω-dithiol tripeptide, HSLeu-Leu-Gly-NEtSH. The pH dependence of thiolate ion generation by the cysteamine thiol aided the incorporation of the needed stimulus (pH) for the overall success of TTE (activation step) - thiol-Michael addition (crosslinking) strategy. Secondly, with potential biomedical applications in focus, the susceptibility of TDP, like other thioesters, to intermolecular TTE reaction was probed with a group of thiols of varying thiol pKa values, since biological milieu characteristically contain peptide/protein thiols. L-cysteine, which is a biologically relevant thiol, and a small molecular weight thiol, methylthioglycolate both with relatively similar thiol pKa, values, led to an increase concentration of the dithiol crosslinker when reacted with TDP. In the presence of acidic thiols (p-NTP and 4MBA), a decrease in the dithiol concentration was observed, an observation that can be attributed to the inability of the TTE tetrahedral intermediate to dissociate into exchange products and is in line with pKa requirements for successful TTE reaction. These results additionally makes TDP more attractive and the potentially the first crosslinker precursor for applications in biologically relevant media. Finally, the ability of TDP to promote pH-sensitive in situ gel formation was probed with maleimide functionalized 4-arm polyethylene glycol polymers in tris-buffered media of varying pHs. When a 1:1 thiol: maleimide molar ratio was used, TDP-PEG4MAL hydrogels formed within 3, 12 and 24 hours at pH values of 8.5, 8.0 and 7.5 respectively. However, gelation times of 3, 5 and 30 mins were observed for the same pH trend when the thiol: maleimide molar was increased to 2:1. A direct correlation of thiol content with G' of the gels at each pH could also be drawn by comparing gels with thiol: maleimide ratios of 1:1 to those with 2:1 thiol: maleimide mole ratios. This is supported by the fact that the storage modulus (G') is linearly dependent on the crosslinking density of the polymer. The values of initial G′ for all gels ranged between (200 - 5000 Pa), which falls in the range of elasticities of certain tissue microenvironments for example brain tissue 200 - 1000 Pa and adipose tissue (2500 - 3500 Pa). Knowledge so far gained from the study on the ability to design and tune the exchange reaction of thioester containing peptide mimetic will give those working in the field further insight into the development of new sequences tailored towards specific applications. TTE substrate design using peptide mimetic as presented in this work has revealed interesting new insights considering the state-of-the-art. Using the results obtained as reference, the strategy provides a possibility to extend the concept to the controlled delivery of active molecules needed for other robust and high yielding crosslinking reactions for biomedical applications. Application for this sequentially coupled functional system could be seen e.g. in the treatment of inflamed tissues associated with urinary tract like bladder infections for which pH levels above 7 were reported. By the inclusion of cell adhesion peptide motifs, the hydrogel network formed at this pH could act as a new support layer for the healing of damage epithelium as shown in interfacial gel formation experiments using TDP and PEG4MAL droplets. The versatility of the thiodepsipeptide sequence, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-(TDPo) was extended for the design and synthesis of a MMP-sensitive 4-arm PEG-TDPo conjugate. The purported cleavage of TDPo at the Gly-SLeu bond yields active thiol units for subsequent reaction of orthogonal Michael acceptor moieties. One of the advantages of stimuli-promoted in situ crosslinking systems using short peptides should be the ease of design of required peptide molecules due to the predictability of peptide functions their sequence structure. Consequently the functionalisation of a 4-arm PEG core with the collagenase active TDPo sequence yielded an MMP-sensitive 4-arm thiodepsipeptide-PEG conjugate (PEG4TDPo) substrate. Cleavage studies using thiol flourometric assay in the presence of MMPs -2 and -9 confirmed the susceptibility of PEG4TDPo towards these enzymes. The resulting time-dependent increase in fluorescence intensity in the presence of thiol assay signifies the successful cleavage of TDPo at the Gly-SLeu bond as expected. It was observed that the cleavage studies with thiol flourometric assay introduces a sigmoid non-Michaelis-Menten type kinetic profile, hence making it difficult to accurately determine the enzyme cycling parameters, kcat and KM . Gelation studies with PEG4MAL at 10 \% wt. concentrations revealed faster gelation with MMP-2 than MMP-9 with 28 and 40 min gelation times respectively. Possible contributions by hydrolytic cleavage of PEG4TDPo has resulted in the gelation of PEG4MAL blank samples but only after 60 minutes of reaction. From theoretical considerations, the simultaneous gelation reaction would be expected to more negatively impact the enzymatic than hydrolytic cleavage. The exact contributions from hydrolytic cleavage of PEG4TDPo would however require additional studies. In summary this new and simplified in situ crosslinking system using peptide-based crosslinker precursors with tuneable properties exhibited in situ crosslinking gelation kinetics on similar levels with already active dithiols reported. The advantageous on-demand functionality associated with its pH-sensitivity and physiological compatibility makes it a strong candidate worth further research as biomedical applications in general and on-demand material synthesis is concerned. Results from MMP-promoted gelation system unveils a simple but unexplored approach for in situ synthesis of covalently crosslinked soft materials, that could lead to the development of an alternative pathway in addressing cancer metastasis by making use of MMP overexpression as a trigger. This goal has so far not being reach with MMP inhibitors despite the extensive work this regard.}, language = {en} } @phdthesis{Zeitz2022, author = {Zeitz, Maria}, title = {Modeling the future resilience of the Greenland Ice Sheet}, doi = {10.25932/publishup-56883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-568839}, school = {Universit{\"a}t Potsdam}, pages = {x, 189}, year = {2022}, abstract = {The Greenland Ice Sheet is the second-largest mass of ice on Earth. Being almost 2000 km long, more than 700 km wide, and more than 3 km thick at the summit, it holds enough ice to raise global sea levels by 7m if melted completely. Despite its massive size, it is particularly vulnerable to anthropogenic climate change: temperatures over the Greenland Ice Sheet have increased by more than 2.7◦C in the past 30 years, twice as much as the global mean temperature. Consequently, the ice sheet has been significantly losing mass since the 1980s and the rate of loss has increased sixfold since then. Moreover, it is one of the potential tipping elements of the Earth System, which might undergo irreversible change once a warming threshold is exceeded. This thesis aims at extending the understanding of the resilience of the Greenland Ice Sheet against global warming by analyzing processes and feedbacks relevant to its centennial to multi-millennial stability using ice sheet modeling. One of these feedbacks, the melt-elevation-feedback is driven by the temperature rise with decreasing altitudes: As the ice sheet melts, its thickness and surface elevation decrease, exposing the ice surface to warmer air and thus increasing the melt rates even further. The glacial isostatic adjustment (GIA) can partly mitigate this melt-elevation feedback as the bedrock lifts in response to an ice load decrease, forming the negative GIA feedback. In my thesis, I show that the interaction between these two competing feedbacks can lead to qualitatively different dynamical responses of the Greenland Ice Sheet to warming - from permanent loss to incomplete recovery, depending on the feedback parameters. My research shows that the interaction of those feedbacks can initiate self-sustained oscillations of the ice volume while the climate forcing remains constant. Furthermore, the increased surface melt changes the optical properties of the snow or ice surface, e.g. by lowering their albedo, which in turn enhances melt rates - a process known as the melt-albedo feedback. Process-based ice sheet models often neglect this melt-albedo feedback. To close this gap, I implemented a simplified version of the diurnal Energy Balance Model, a computationally efficient approach that can capture the first-order effects of the melt-albedo feedback, into the Parallel Ice Sheet Model (PISM). Using the coupled model, I show in warming experiments that the melt-albedo feedback almost doubles the ice loss until the year 2300 under the low greenhouse gas emission scenario RCP2.6, compared to simulations where the melt-albedo feedback is neglected, and adds up to 58\% additional ice loss under the high emission scenario RCP8.5. Moreover, I find that the melt-albedo feedback dominates the ice loss until 2300, compared to the melt-elevation feedback. Another process that could influence the resilience of the Greenland Ice Sheet is the warming induced softening of the ice and the resulting increase in flow. In my thesis, I show with PISM how the uncertainty in Glen's flow law impacts the simulated response to warming. In a flow line setup at fixed climatic mass balance, the uncertainty in flow parameters leads to a range of ice loss comparable to the range caused by different warming levels. While I focus on fundamental processes, feedbacks, and their interactions in the first three projects of my thesis, I also explore the impact of specific climate scenarios on the sea level rise contribution of the Greenland Ice Sheet. To increase the carbon budget flexibility, some warming scenarios - while still staying within the limits of the Paris Agreement - include a temporal overshoot of global warming. I show that an overshoot by 0.4◦C increases the short-term and long-term ice loss from Greenland by several centimeters. The long-term increase is driven by the warming at high latitudes, which persists even when global warming is reversed. This leads to a substantial long-term commitment of the sea level rise contribution from the Greenland Ice Sheet. Overall, in my thesis I show that the melt-albedo feedback is most relevant for the ice loss of the Greenland Ice Sheet on centennial timescales. In contrast, the melt-elevation feedback and its interplay with the GIA feedback become increasingly relevant on millennial timescales. All of these influence the resilience of the Greenland Ice Sheet against global warming, in the near future and on the long term.}, language = {en} } @phdthesis{Jongejans2022, author = {Jongejans, Loeka Laura}, title = {Organic matter stored in ice-rich permafrost}, doi = {10.25932/publishup-56491}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564911}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 178}, year = {2022}, abstract = {The Arctic is changing rapidly and permafrost is thawing. Especially ice-rich permafrost, such as the late Pleistocene Yedoma, is vulnerable to rapid and deep thaw processes such as surface subsidence after the melting of ground ice. Due to permafrost thaw, the permafrost carbon pool is becoming increasingly accessible to microbes, leading to increased greenhouse gas emissions, which enhances the climate warming. The assessment of the molecular structure and biodegradability of permafrost organic matter (OM) is highly needed. My research revolves around the question "how does permafrost thaw affect its OM storage?" More specifically, I assessed (1) how molecular biomarkers can be applied to characterize permafrost OM, (2) greenhouse gas production rates from thawing permafrost, and (3) the quality of OM of frozen and (previously) thawed sediments. I studied deep (max. 55 m) Yedoma and thawed Yedoma permafrost sediments from Yakutia (Sakha Republic). I analyzed sediment cores taken below thermokarst lakes on the Bykovsky Peninsula (southeast of the Lena Delta) and in the Yukechi Alas (Central Yakutia), and headwall samples from the permafrost cliff Sobo-Sise (Lena Delta) and the retrogressive thaw slump Batagay (Yana Uplands). I measured biomarker concentrations of all sediment samples. Furthermore, I carried out incubation experiments to quantify greenhouse gas production in thawing permafrost. I showed that the biomarker proxies are useful to assess the source of the OM and to distinguish between OM derived from terrestrial higher plants, aquatic plants and microbial activity. In addition, I showed that some proxies help to assess the degree of degradation of permafrost OM, especially when combined with sedimentological data in a multi-proxy approach. The OM of Yedoma is generally better preserved than that of thawed Yedoma sediments. The greenhouse gas production was highest in the permafrost sediments that thawed for the first time, meaning that the frozen Yedoma sediments contained most labile OM. Furthermore, I showed that the methanogenic communities had established in the recently thawed sediments, but not yet in the still-frozen sediments. My research provided the first molecular biomarker distributions and organic carbon turnover data as well as insights in the state and processes in deep frozen and thawed Yedoma sediments. These findings show the relevance of studying OM in deep permafrost sediments.}, language = {en} } @phdthesis{Trautmann2022, author = {Trautmann, Tina}, title = {Understanding global water storage variations using model-data integration}, doi = {10.25932/publishup-56595}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565954}, school = {Universit{\"a}t Potsdam}, pages = {VIII, 141}, year = {2022}, abstract = {Climate change is one of the greatest challenges to humanity in this century, and most noticeable consequences are expected to be impacts on the water cycle - in particular the distribution and availability of water, which is fundamental for all life on Earth. In this context, it is essential to better understand where and when water is available and what processes influence variations in water storages. While estimates of the overall terrestrial water storage (TWS) variations are available from the GRACE satellites, these represent the vertically integrated signal over all water stored in ice, snow, soil moisture, groundwater and surface water bodies. Therefore, complementary observational data and hydrological models are still required to determine the partitioning of the measured signal among different water storages and to understand the underlying processes. However, the application of large-scale observational data is limited by their specific uncertainties and the incapacity to measure certain water fluxes and storages. Hydrological models, on the other hand, vary widely in their structure and process-representation, and rarely incorporate additional observational data to minimize uncertainties that arise from their simplified representation of the complex hydrologic cycle. In this context, this thesis aims to contribute to improving the understanding of global water storage variability by combining simple hydrological models with a variety of complementary Earth observation-based data. To this end, a model-data integration approach is developed, in which the parameters of a parsimonious hydrological model are calibrated against several observational constraints, inducing GRACE TWS, simultaneously, while taking into account each data's specific strengths and uncertainties. This approach is used to investigate 3 specific aspects that are relevant for modelling and understanding the composition of large-scale TWS variations. The first study focusses on Northern latitudes, where snow and cold-region processes define the hydrological cycle. While the study confirms previous findings that seasonal dynamics of TWS are dominated by the cyclic accumulation and melt of snow, it reveals that inter-annual TWS variations on the contrary, are determined by variations in liquid water storages. Additionally, it is found to be important to consider the impact of compensatory effects of spatially heterogeneous hydrological variables when aggregating the contribution of different storage components over large areas. Hence, the determinants of TWS variations are scale-dependent and underlying driving mechanism cannot be simply transferred between spatial and temporal scales. These findings are supported by the second study for the global land areas beyond the Northern latitudes as well. This second study further identifies the considerable impact of how vegetation is represented in hydrological models on the partitioning of TWS variations. Using spatio-temporal varying fields of Earth observation-based data to parameterize vegetation activity not only significantly improves model performance, but also reduces parameter equifinality and process uncertainties. Moreover, the representation of vegetation drastically changes the contribution of different water storages to overall TWS variability, emphasizing the key role of vegetation for water allocation, especially between sub-surface and delayed water storages. However, the study also identifies parameter equifinality regarding the decay of sub-surface and delayed water storages by either evapotranspiration or runoff, and thus emphasizes the need for further constraints hereof. The third study focuses on the role of river water storage, in particular whether it is necessary to include computationally expensive river routing for model calibration and validation against the integrated GRACE TWS. The results suggest that river routing is not required for model calibration in such a global model-data integration approach, due to the larger influence other observational constraints, and the determinability of certain model parameters and associated processes are identified as issues of greater relevance. In contrast to model calibration, considering river water storage derived from routing schemes can already significantly improve modelled TWS compared to GRACE observations, and thus should be considered for model evaluation against GRACE data. Beyond these specific findings that contribute to improved understanding and modelling of large-scale TWS variations, this thesis demonstrates the potential of combining simple modeling approaches with diverse Earth observational data to improve model simulations, overcome inconsistencies of different observational data sets, and identify areas that require further research. These findings encourage future efforts to take advantage of the increasing number of diverse global observational data.}, language = {en} } @phdthesis{Ziege2022, author = {Ziege, Ricardo}, title = {Growth dynamics and mechanical properties of E. coli biofilms}, doi = {10.25932/publishup-55986}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-559869}, school = {Universit{\"a}t Potsdam}, pages = {xi, 123}, year = {2022}, abstract = {Biofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims at clarifying how the morphogenesis of Escherichia coli (E. coli) biofilms is influenced by their growth dynamics and mechanical properties. To address this question, I used methods from cell mechanics and materials science. I first studied how biological activity in biofilms gives rise to non-uniform growth patterns. In a second study, I investigated how E. coli biofilm morphogenesis and its mechanical properties adapt to an environmental stimulus, namely the water content of their substrate. Finally, I estimated how the mechanical properties of E. coli biofilms are altered when the bacteria express different extracellular biopolymers. On nutritive hydrogels, micron-sized E. coli cells can build centimetre-large biofilms. During this process, bacterial proliferation and matrix production introduce mechanical stresses in the biofilm, which release through the formation of macroscopic wrinkles and delaminated buckles. To relate these biological and mechanical phenomena, I used time-lapse fluorescence imaging to track cell and matrix surface densities through the early and late stages of E. coli biofilm growth. Colocalization of high cell and matrix densities at the periphery precede the onset of mechanical instabilities at this annular region. Early growth is detected at this outer annulus, which was analysed by adding fluorescent microspheres to the bacterial inoculum. But only when high rates of matrix production are present in the biofilm centre, does overall biofilm spreading initiate along the solid-air interface. By tracking larger fluorescent particles for a long time, I could distinguish several kinematic stages of E. coli biofilm expansion and observed a transition from non-linear to linear velocity profiles, which precedes the emergence of wrinkles at the biofilm periphery. Decomposing particle velocities to their radial and circumferential components revealed a last kinematic stage, where biofilm movement is mostly directed towards the radial delaminated buckles, which verticalize. The resulting compressive strains computed in these regions were observed to substantially deform the underlying agar substrates. The co-localization of higher cell and matrix densities towards an annular region and the succession of several kinematic stages are thus expected to promote the emergence of mechanical instabilities at the biofilm periphery. These experimental findings are predicted to advance future modelling approaches of biofilm morphogenesis. E. coli biofilm morphogenesis is further anticipated to depend on external stimuli from the environment. To clarify how the water could be used to tune biofilm material properties, we quantified E. coli biofilm growth, wrinkling dynamics and rigidity as a function of the water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that substrates with high water content promote biofilm spreading kinetics, while substrates with low water content promote biofilm wrinkling. The wrinkles observed on biofilm cross-sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, the micro-indentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to the water content of their substrate, which might be used for tuning their material properties in view of further applications. Biofilm material properties further depend on the composition and structure of the matrix of extracellular proteins and polysaccharides. In particular, E. coli biofilms were suggested to present tissue-like elasticity due to a dense fibre network consisting of amyloid curli and phosphoethanolamine-modified cellulose. To understand the contribution of these components to the emergent mechanical properties of E. coli biofilms, we performed micro-indentation on biofilms grown from bacteria of several strains. Besides showing higher dry masses, larger spreading diameters and slightly reduced water contents, biofilms expressing both main matrix components also presented high rigidities in the range of several hundred kPa, similar to biofilms containing only curli fibres. In contrast, a lack of amyloid curli fibres provides much higher adhesive energies and more viscoelastic fluid-like material behaviour. Therefore, the combination of amyloid curli and phosphoethanolamine-modified cellulose fibres implies the formation of a composite material whereby the amyloid curli fibres provide rigidity to E. coli biofilms, whereas the phosphoethanolamine-modified cellulose rather acts as a glue. These findings motivate further studies involving purified versions of these protein and polysaccharide components to better understand how their interactions benefit biofilm functions. All three studies depict different aspects of biofilm morphogenesis, which are interrelated. The first work reveals the correlation between non-uniform biological activities and the emergence of mechanical instabilities in the biofilm. The second work acknowledges the adaptive nature of E. coli biofilm morphogenesis and its mechanical properties to an environmental stimulus, namely water. Finally, the last study reveals the complementary role of the individual matrix components in the formation of a stable biofilm material, which not only forms complex morphologies but also functions as a protective shield for the bacteria it contains. Our experimental findings on E. coli biofilm morphogenesis and their mechanical properties can have further implications for fundamental and applied biofilm research fields.}, language = {en} } @phdthesis{Neuendorf2022, author = {Neuendorf, Claudia}, title = {Leistungsstarke Sch{\"u}lerinnen und Sch{\"u}ler in Deutschland}, doi = {10.25932/publishup-56470}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-564702}, school = {Universit{\"a}t Potsdam}, pages = {203}, year = {2022}, abstract = {Die vorliegende kumulative Promotionsarbeit besch{\"a}ftigt sich mit leistungsstarken Sch{\"u}lerinnen und Sch{\"u}lern, die seit 2015 in der deutschen Bildungspolitik, zum Beispiel im Rahmen von F{\"o}rderprogrammen wieder mehr Raum einnehmen, nachdem in Folge des „PISA-Schocks" im Jahr 2000 zun{\"a}chst der Fokus st{\"a}rker auf den Risikogruppen lag. W{\"a}hrend leistungsst{\"a}rkere Sch{\"u}lerinnen und Sch{\"u}ler in der {\"o}ffentlichen Wahrnehmung h{\"a}ufig mit „(Hoch-)Begabten" identifiziert werden, geht die Arbeit {\"u}ber die traditionelle Begabungsforschung, die eine generelle Intelligenz als Grundlage f{\"u}r Leistungsf{\"a}higkeit von Sch{\"u}lerinnen und Sch{\"u}lern begreift und beforscht, hinaus. Stattdessen l{\"a}sst sich eher in den Bereich der Talentforschung einordnen, die den Fokus weg von allgemeinen Begabungen auf spezifische Pr{\"a}diktoren und Outcomes im individuellen Entwicklungsverlauf legt. Der Fokus der Arbeit liegt daher nicht auf Intelligenz als Potenzial, sondern auf der aktuellen schulischen Leistung, die als Ergebnis und Ausgangspunkt von Entwicklungsprozessen in einer Leistungsdom{\"a}ne doppelte Bedeutung erh{\"a}lt. Die Arbeit erkennt die Vielgestaltigkeit des Leistungsbegriffs an und ist bestrebt, neue Anl{\"a}sse zu schaffen, {\"u}ber den Leistungsbegriff und seine Operationalisierung in der Forschung zu diskutieren. Hierf{\"u}r wird im ersten Teil ein systematisches Review zur Operationalisierung von Leistungsst{\"a}rke durchgef{\"u}hrt (Artikel I). Es werden Faktoren herausgearbeitet, auf welchen sich die Operationalisierungen unterscheiden k{\"o}nnen. Weiterhin wird ein {\"U}berblick gegeben, wie Studien zu Leistungsstarken sich seit dem Jahr 2000 auf diesen Dimensionen verorten lassen. Es zeigt sich, dass eindeutige Konventionen zur Definition schulischer Leistungsst{\"a}rke noch nicht existieren, woraus folgt, dass Ergebnisse aus Studien, die sich mit leistungsstarken Sch{\"u}lerinnen und Sch{\"u}lern besch{\"a}ftigen, nur bedingt miteinander vergleichbar sind. Im zweiten Teil der Arbeit wird im Rahmen zwei weiterer Artikel, welche sich mit der Leistungsentwicklung (Artikel II) und der sozialen Einbindung (Artikel III) von leistungsstarken Sch{\"u}lerinnen und Sch{\"u}lern befassen, darauf aufbauend der Ansatz verfolgt, die Variabilit{\"a}t von Ergebnissen {\"u}ber verschiedene Operationalisierungen von Leistungsst{\"a}rke deutlich zu machen. Damit wird unter anderem auch die k{\"u}nftige Vergleichbarkeit mit anderen Studien erleichtert. Genutzt wird dabei das Konzept der Multiversumsanalyse (Steegen et al., 2016), bei welcher viele parallele Spezifikationen, die zugleich sinnvolle Alternativen f{\"u}r die Operationalisierung darstellen, nebeneinandergestellt und in ihrem Effekt verglichen werden (Jansen et al., 2021). Die Multiversumsanalyse kn{\"u}pft konzeptuell an das bereits vor l{\"a}ngerem entwickelte Forschungsprogramm des kritischen Multiplismus an (Patry, 2013; Shadish, 1986, 1993), erh{\"a}lt aber als spezifische Methode aktuell im Rahmen der Replizierbarkeitskrise in der Psychologie eine besondere Bedeutung. Dabei st{\"u}tzt sich die vorliegende Arbeit auf die Sekund{\"a}ranalyse großangelegter Schulleistungsstudien, welche den Vorteil besitzen, dass eine große Zahl an Datenpunkten (Variablen und Personen) zur Verf{\"u}gung steht, um Effekte unterschiedlicher Operationalisierungen zu vergleichen. Inhaltlich greifen Artikel II und III Themen auf, die in der wissenschaftlichen und gesellschaftlichen Diskussion zu Leistungsstarken und ihrer Wahrnehmung in der {\"O}ffentlichkeit immer wieder aufscheinen: In Artikel II wird zun{\"a}chst die Frage gestellt, ob Leistungsstarke bereits im aktuellen Regelunterricht einen kumulativen Vorteil gegen{\"u}ber ihren weniger leistungsstarken Mitsch{\"u}lerinnen und Mitsch{\"u}lern haben (Matth{\"a}us-Effekt). Die Ergebnisse zeigen, dass an Gymnasien keineswegs von sich vergr{\"o}ßernden Unterschieden gesprochen werden kann. Im Gegenteil, es verringerte sich im Laufe der Sekundarstufe der Abstand zwischen den Gruppen, indem die Lernraten bei leistungsschw{\"a}cheren Sch{\"u}lerinnen und Sch{\"u}lern h{\"o}her waren. Artikel III hingegen betrifft die soziale Wahrnehmung von leistungsstarken Sch{\"u}lerinnen und Sch{\"u}lern. Auch hier h{\"a}lt sich in der {\"o}ffentlichen Diskussion die Annahme, dass h{\"o}here Leistungen mit Nachteilen in der sozialen Integration einhergehen k{\"o}nnten, was sich auch in Studien widerspiegelt, die sich mit Geschlechterstereotypen Jugendlicher in Bezug auf Schulleistung besch{\"a}ftigen. In Artikel III wird unter anderem erneut das Potenzial der Multiversumsanalyse genutzt, um die Variation des Zusammenhangs {\"u}ber Operationalisierungen von Leistungsst{\"a}rke zu beschreiben. Es zeigt sich unter unterschiedlichen Operationalisierungen von Leistungsst{\"a}rke und {\"u}ber verschiedene Facetten sozialer Integration hinweg, dass die Zusammenh{\"a}nge zwischen Leistung und sozialer Integration insgesamt leicht positiv ausfallen. Annahmen, die auf differenzielle Effekte f{\"u}r Jungen und M{\"a}dchen oder f{\"u}r unterschiedliche F{\"a}cher abzielen, finden in diesen Analysen keine Best{\"a}tigung. Die Dissertation zeigt, dass der Vergleich unterschiedlicher Ans{\"a}tze zur Operationalisierung von Leistungsst{\"a}rke — eingesetzt im Rahmen eines kritischen Multiplismus — das Verst{\"a}ndnis von Ph{\"a}nomenen vertiefen kann und auch das Potenzial hat, Theorieentwicklung voranzubringen.}, language = {de} }