@misc{MtilatilaBronstertVormoor2022, author = {Mtilatila, Lucy Mphatso Ng'ombe and Bronstert, Axel and Vormoor, Klaus Josef}, title = {Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1287}, issn = {1866-8372}, doi = {10.25932/publishup-57128}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571284}, pages = {16}, year = {2022}, abstract = {The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021-2050) and far-term period (2071-2100) with reference to 1976-2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50\% during 2021-2050 and between +131 and +388\% during 2071-2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture.}, language = {en} } @misc{MarzetzSpijkermanStriebeletal.2020, author = {Marzetz, Vanessa and Spijkerman, Elly and Striebel, Maren and Wacker, Alexander}, title = {Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1109}, issn = {1866-8372}, doi = {10.25932/publishup-49104}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-491041}, pages = {13}, year = {2020}, abstract = {In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important.}, language = {en} } @misc{OguntundeAbiodunLischeidetal.2020, author = {Oguntunde, Philip G. and Abiodun, Babatunde Joseph and Lischeid, Gunnar and Abatan, Abayomi A.}, title = {Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {13}, issn = {1866-8372}, doi = {10.25932/publishup-52594}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525943}, pages = {14}, year = {2020}, abstract = {This study investigates possible impacts of four global warming levels (GWLs: GWL1.5, GWL2.0, GWL2.5, and GWL3.0) on drought characteristics over Niger River basin (NRB) and Volta River basin (VRB). Two drought indices-Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI)-were employed in characterizing droughts in 20 multi-model simulation outputs from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The performance of the simulation in reproducing basic hydro-climatological features and severe drought characteristics (i.e., magnitude and frequency) in the basins were evaluated. The projected changes in the future drought frequency were quantified and compared under the four GWLs for two climate forcing scenarios (RCP8.5 and RCP4.5). The regional climate model (RCM) ensemble gives a realistic simulation of historical hydro-climatological variables needed to calculate the drought indices. With SPEI, the simulation ensemble projects an increase in the magnitude and frequency of severe droughts over both basins (NRB and VRB) at all GWLs, but the increase, which grows with the GWLs, is higher over NRB than over VRB. More than 75\% of the simulations agree on the projected increase at GWL1.5 and all simulations agree on the increase at higher GWLs. With SPI, the projected changes in severe drought is weaker and the magnitude remains the same at all GWLs, suggesting that SPI projection may underestimate impacts of the GWLs on the intensity and severity of future drought. The results of this study have application in mitigating impact of global warming on future drought risk over the regional water systems.}, language = {en} } @misc{SmithBookhagen2020, author = {Smith, Taylor and Bookhagen, Bodo}, title = {Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1020}, issn = {1866-8372}, doi = {10.25932/publishup-48417}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-484176}, pages = {15}, year = {2020}, abstract = {High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987-2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987-1997, to much more positive trends across large regions of HMA during the periods 1997-2007 and 2007-2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances.}, language = {en} } @misc{HuberKrummenauerPenaOrtizetal.2020, author = {Huber, Veronika and Krummenauer, Linda and Pe{\~n}a-Ortiz, Cristina and Lange, Stefan and Gasparrini, Antonio and Vicedo-Cabrera, Ana Maria and Garcia-Herrera, Ricardo and Frieler, Katja}, title = {Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51651}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516511}, pages = {12}, year = {2020}, abstract = {Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49\% (95\%CI: 3.82-7.19) and 0.81\% (95\%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45\% (95\%CI: -0.02-1.06) at 3 degrees C, 1.53\% (95\%CI: 0.96-2.06) at 4 degrees C, and 2.88\% (95\%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities.}, language = {en} } @misc{StoofLeichsenringPestryakovaEppetal.2020, author = {Stoof-Leichsenring, Kathleen Rosemarie and Pestryakova, Luidmila Agafyevna and Epp, Laura Saskia and Herzschuh, Ulrike}, title = {Phylogenetic diversity and environment form assembly rules for Arctic diatom genera}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-51548}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515485}, pages = {16}, year = {2020}, abstract = {Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming.}, language = {en} } @misc{PalmerGregoryBaggeetal.2020, author = {Palmer, Matthew D. and Gregory, Jonathan and Bagge, Meike and Calvert, Daley and Hagedoorn, Jan Marius and Howard, Tom and Klemann, Volker and Lowe, Jason A. and Roberts, Chris and Slangen, Aimee B. A. and Spada, Giorgio}, title = {Exploring the drivers of global and local sea-level change over the 21st century and beyond}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-54988}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549881}, pages = {27}, year = {2020}, abstract = {We present a new set of global and local sea-level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5-based sea-level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea-level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea-level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea-level change in the coming decades and the potential value of annual-to-decadal predictions of local sea-level change. Projections to 2300 show a substantial degree of committed sea-level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50\%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post-2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario.}, language = {en} } @misc{AyzelIzhitskiy2019, author = {Ayzel, Georgy and Izhitskiy, Alexander}, title = {Climate change impact assessment on freshwater inflow into the Small Aral Sea}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1071}, issn = {1866-8372}, doi = {10.25932/publishup-47279}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472794}, pages = {21}, year = {2019}, abstract = {During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007-2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash-Sutcliffe efficiency of 0.72 and a Kling-Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century.}, language = {en} } @misc{SchneiderWalsh2019, author = {Schneider, Birgit and Walsh, Lynda}, title = {The politics of zoom}, series = {Postprints der Universit{\"a}t Potsdam Philosophische Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Philosophische Reihe}, number = {159}, issn = {1866-8380}, doi = {10.25932/publishup-42481}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424819}, year = {2019}, abstract = {Following the mandate in the Paris Agreement for signatories to provide "climate services" to their constituents, "downscaled" climate visualizations are proliferating. But the process of downscaling climate visualizations does not neutralize the political problems with their synoptic global sources—namely, their failure to empower communities to take action and their replication of neoliberal paradigms of globalization. In this study we examine these problems as they apply to interactive climate-visualization platforms, which allow their users to localize global climate information to support local political action. By scrutinizing the political implications of the "zoom" tool from the perspective of media studies and rhetoric, we add to perspectives of cultural cartography on the issue of scaling from our fields. Namely, we break down the cinematic trope of "zooming" to reveal how it imports the political problems of synopticism to the level of individual communities. As a potential antidote to the politics of zoom, we recommend a downscaling strategy of connectivity, which associates rather than reduces situated views of climate to global ones.}, language = {en} } @misc{UnterbergerHudsonBotzenetal.2018, author = {Unterberger, Christian and Hudson, Paul and Botzen, W. J. Wouter and Schroeer, Katharina and Steininger, Karl W.}, title = {Future public sector flood risk and risk sharing arrangements}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {634}, issn = {1866-8372}, doi = {10.25932/publishup-42462}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424629}, pages = {11}, year = {2018}, abstract = {Climate change, along with socio-economic development, will increase the economic impacts of floods. While the factors that influence flood risk to private property have been extensively studied, the risk that natural disasters pose to public infrastructure and the resulting implications on public sector budgets, have received less attention. We address this gap by developing a two-staged model framework, which first assesses the flood risk to public infrastructure in Austria. Combining exposure and vulnerability information at the building level with inundation maps, we project an increase in riverine flood damage, which progressively burdens public budgets. Second, the risk estimates are integrated into an insurance model, which analyzes three different compensation arrangements in terms of the monetary burden they place on future governments' budgets and the respective volatility of payments. Formalized insurance compensation arrangements offer incentives for risk reduction measures, which lower the burden on public budgets by reducing the vulnerability of buildings that are exposed to flooding. They also significantly reduce the volatility of payments and thereby improve the predictability of flood damage expenditures. These features indicate that more formalized insurance arrangements are an improvement over the purely public compensation arrangement currently in place in Austria.}, language = {en} }