@article{IlnytskyiNeherSaphiannikova2011, author = {Ilnytskyi, Jaroslav M. and Neher, Dieter and Saphiannikova, Marina}, title = {Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture molecular dynamics study}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {135}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.3614499}, pages = {12}, year = {2011}, abstract = {Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.}, language = {en} } @article{KniepertSchubertBlakesleyetal.2011, author = {Kniepert, Juliane and Schubert, Marcel and Blakesley, James C. and Neher, Dieter}, title = {Photogeneration and recombination in P3HT/PCBM solar cells probed by time-delayed collection field experiments}, series = {The journal of physical chemistry letters}, volume = {2}, journal = {The journal of physical chemistry letters}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz200155b}, pages = {700 -- 705}, year = {2011}, abstract = {Time-delayed collection field (TDCF) experiments are performed on bulk heterojunction solar cells comprised of a blend of poly(3-hexylthiophene) and [6,6]-phenyl C-71 butyric acid methyl ester. TDCF is analogous to a pump-probe experiment using optical excitation and an electrical probe with a resolution of < 100 ns. The number of free charge carriers extracted after a short delay is found to be independent of the electric field during illumination. Also, experiments performed with a variable delay between the optical excitation and the electrical probe do not reveal any evidence for the generation of charge via field-assisted dissociation of bound long-lived polaron pairs. Photocurrent transients are well fitted by computational drift diffusion simulations with only direct generation of free charge carriers. With increasing delay times between pump and probe, two loss mechanisms are identified; first, charge-carriers are swept out of the device by the internal electric field, and second, bimolecular recombination of the remaining carriers takes place with a reduced recombination coefficient.}, language = {en} } @article{KuehnPingelBreusingetal.2011, author = {Kuehn, Sergei and Pingel, Patrick and Breusing, Markus and Fischer, Thomas and Stumpe, Joachim and Neher, Dieter and Elsaesser, Thomas}, title = {High-Resolution Near-Field Optical Investigation of Crystalline Domains in Oligomeric PQT-12 Thin Films}, series = {Advanced functional materials}, volume = {21}, journal = {Advanced functional materials}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1616-301X}, doi = {10.1002/adfm.201001978}, pages = {860 -- 868}, year = {2011}, abstract = {The structure and morphology on different length scales dictate both the electrical and optical properties of organic semiconductor thin films. Using a combination of spectroscopic methods, including scanning near-field optical microscopy, we study the domain structure and packing quality of highly crystalline thin films of oligomeric PQT-12 with 100 nanometer spatial resolution. The pronounced optical anisotropy of these layers measured by polarized light microscopy facilitates the identification of regions with uniform molecular orientation. We find that a hierarchical order on three different length scales exists in these layers, made up of distinct well-ordered dichroic areas at the ten-micrometer-scale, which are sub-divided into domains with different molecular in-plane orientation. These serve as a template for the formation of smaller needle-like crystallites at the layer surface. A high degree of crystalline order is believed to be the cause of the rather high field-effect mobility of these layers of 10(-3) cm 2 V(-1) s(-1), whereas it is limited by the presence of domain boundaries at macroscopic distances.}, language = {en} } @article{BlakesleyNeher2011, author = {Blakesley, James C. and Neher, Dieter}, title = {Relationship between energetic disorder and open-circuit voltage in bulk heterojunction organic solar cells}, series = {Physical review : B, Condensed matter and materials physics}, volume = {84}, journal = {Physical review : B, Condensed matter and materials physics}, number = {7}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.84.075210}, pages = {12}, year = {2011}, abstract = {We simulate organic bulk heterojunction solar cells. The effects of energetic disorder are incorporated through a Gaussian or exponential model of density of states. Analytical models of open-circuit voltage (V(OC)) are derived from the splitting of quasi-Fermi potentials. Their predictions are backed up by more complex numerical device simulations including effects such as carrier-density-dependent charge-carrier mobilities. It is predicted that the V(OC) depends on: (1) the donor-acceptor energy gap; (2) charge-carrier recombination rates; (3) illumination intensity; (4) the contact work functions (if not in the pinning regime); and (5) the amount of energetic disorder. A large degree of energetic disorder, or a high density of traps, is found to cause significant reductions in V(OC). This can explain why V(OC) is often less than expected in real devices. Energetic disorder also explains the nonideal temperature and intensity dependence of V(OC) and the superbimolecular recombination rates observed in many real bulk heterojunction solar cells.}, language = {en} } @article{LangeBlakesleyFrischetal.2011, author = {Lange, Ilja and Blakesley, James C. and Frisch, Johannes and Vollmer, Antje and Koch, Norbert and Neher, Dieter}, title = {Band bending in conjugated polymer layers}, series = {Physical review letters}, volume = {106}, journal = {Physical review letters}, number = {21}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.106.216402}, pages = {4}, year = {2011}, abstract = {We use the Kelvin probe method to study the energy-level alignment of four conjugated polymers deposited on various electrodes. Band bending is observed in all polymers when the substrate work function exceeds critical values. Through modeling, we show that the band bending is explained by charge transfer from the electrodes into a small density of states that extends several hundred meV into the band gap. The energetic spread of these states is correlated with charge-carrier mobilities, suggesting that the same states also govern charge transport in the bulk of these polymers.}, language = {en} } @article{HundertmarkDimovaLengefeldetal.2011, author = {Hundertmark, Michaela and Dimova, Rumiana and Lengefeld, Jan and Seckler, Robert and Hincha, Dirk K.}, title = {The intrinsically disordered late embryogenesis abundant protein LEA18 from Arabidopsis thaliana modulates membrane stability through binding and folding}, series = {Biochimica et biophysica acta : Biomembranes}, volume = {1808}, journal = {Biochimica et biophysica acta : Biomembranes}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2736}, doi = {10.1016/j.bbamem.2010.09.010}, pages = {446 -- 453}, year = {2011}, abstract = {Intrinsically disordered proteins (IDPs) constitute a substantial part of cellular proteomes. late embryogenesis abundant (LEA) proteins are mostly predicted to be IDPs associated with dehydration tolerance in many plant, animal and bacterial species. Their functions, however, are largely unexplored and also their structure and interactions with potential target molecules have only recently been experimentally investigated in a small number of proteins. Here, we report on the structure and interactions with membranes of the Pfam LEA_1 protein LEA18 from the higher plant Arabidopsis thaliana. This functionally uncharacterized positively charged protein specifically aggregated and destabilized negatively charged liposomes. Isothermal titration calorimetry showed binding of the protein to both charged and uncharged membranes. LEA18 alone was largely unstructured in solution. While uncharged membranes had no influence on the secondary structure of LEA18, the protein partially folded into beta-sheet structure in the presence of negatively charged liposomes. These data suggest that LEA18 does not function as a membrane stabilizing protein, as suggested for other LEA proteins. Instead, a possible function of LEA18 could be the composition-dependent modulation of membrane stability, e.g., during signaling or vesicle-mediated transport.}, language = {en} } @article{PopovaHundertmarkSeckleretal.2011, author = {Popova, Antoaneta V. and Hundertmark, Michaela and Seckler, Robert and Hincha, Dirk K.}, title = {Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes}, series = {Biochimica et biophysica acta : Biomembranes}, volume = {1808}, journal = {Biochimica et biophysica acta : Biomembranes}, number = {7}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0005-2736}, doi = {10.1016/j.bbamem.2011.03.009}, pages = {1879 -- 1887}, year = {2011}, abstract = {Dehydration stress-related late embryogenesis abundant (LEA) proteins have been found in plants, invertebrates and bacteria. Most LEA proteins are unstructured in solution, but some fold into amphipathic a-helices during drying. The Pfam LEA_4 (Group 3) protein LEA7 from the higher plant Arabidopsis thaliana was predicted to be 87\% alpha-helical, while CD spectroscopy showed it to be largely unstructured in solution and only 35\% alpha-helical in the dry state. However, the dry protein contained 15\% beta-sheets. FTIR spectroscopy revealed the (beta-sheets to be largely due to aggregation. beta-Sheet content was reduced and alpha-helix content increased when LEA7 was dried in the presence of liposomes with secondary structure apparently influenced by lipid composition. Secondary structure was also affected by the presence of membranes in the fully hydrated state. A temperature-induced increase in the flexibility of the dry protein was also only observed in the presence of membranes. Functional interactions of LEA7 with membranes in the dry state were indicated by its influence on the thermotropic phase transitions of the lipids and interactions with the lipid headgroup phosphates.}, language = {en} } @article{EichlerPohl2011, author = {Eichler, David and Pohl, Martin}, title = {Can ultrahigh-energy cosmic rays come from Gamma-ray bursts? - cosmic rays below the ankle and galactic gamma-ray bursts}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {738}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/738/2/L21}, pages = {4}, year = {2011}, abstract = {The maximum cosmic-ray energy achievable by acceleration by a relativistic blast wave is derived. It is shown that forward shocks from long gamma-ray bursts (GRBs) in the interstellar medium accelerate protons to large enough energies, and have a sufficient energy budget, to produce the Galactic cosmic-ray component just below the ankle at 4 x 10(18) eV, as per an earlier suggestion. It is further argued that, were extragalactic long GRBs responsible for the component above the ankle as well, the occasional Galactic GRB within the solar circle would contribute more than the observational limits on the outward flux from the solar circle, unless an avoidance scenario, such as intermittency and/or beaming, allows the present-day local flux to be less than 10(-3) of the average. Difficulties with these avoidance scenarios are noted.}, language = {en} } @article{MizunoPohlNiemiecetal.2011, author = {Mizuno, Yosuke and Pohl, Martin and Niemiec, Jacek and Zhang, Bing and Nishikawa, Ken-Ichi and Hardee, Philip E.}, title = {Magnetic-field amplification by turbulence in a relativistic shockpropagating through an inhomogeneous medium}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {726}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/726/2/62}, pages = {11}, year = {2011}, abstract = {We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneity, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in two-dimensional simulations. The magnetic energy spectrum is flatter than the Kolmogorov spectrum and indicates that a so-called small-scale dynamo is occurring in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field, and the timescale of magnetic-field growth depends on the shock strength.}, language = {en} } @article{PohlEichler2011, author = {Pohl, Martin and Eichler, David}, title = {Origin of ultra-high-energy galactic cosmic rays the isotropy problem}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {742}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/742/2/114}, pages = {11}, year = {2011}, abstract = {We study the propagation of ultra-high-energy cosmic rays (UHECRs) in the Galaxy, concentrating on the energy range below the ankle in the spectrum at 4 EeV. A Monte Carlo method, based on analytical solutions to the time-dependent diffusion problem, is used to account for intermittency by placing sources at random locations. Assuming a source population that scales with baryon mass density or star formation (e.g., long GRB), we derive constraints arising from intermittency and the observational limits on the composition and anisotropy. It is shown that the composition and anisotropy at 10(18) eV are difficult to reproduce and require that either (1) the particle mean free path is much smaller than a gyroradius, implying the escape time is very long, (2) the composition is heavier than suggested by recent Auger data, (3) the ultra-high-energy sub-ankle component is mostly extragalactic, or (4) we are living in a rare lull in the UHECR production, and the current UHECR intensity is far below the Galactic time average. We therefore recommend a strong observational focus on determining the UHECR composition around 10(18) eV.}, language = {en} }