@misc{PawlakNoetzelDragoetal.2022, author = {Pawlak, Julia and Noetzel, Dominique Christian and Drago, Claudia and Weithoff, Guntram}, title = {Assessing the toxicity of polystyrene beads and silica particles on the microconsumer Brachionus calyciflorus at different timescales}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1277}, issn = {1866-8372}, doi = {10.25932/publishup-56996}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569967}, pages = {1 -- 11}, year = {2022}, abstract = {Environmental pollution by microplastics has become a severe problem in terrestrial and aquatic ecosystems and, according to actual prognoses, problems will further increase in the future. Therefore, assessing and quantifying the risk for the biota is crucial. Standardized short-term toxicological procedures as well as methods quantifying potential toxic effects over the whole life span of an animal are required. We studied the effect of the microplastic polystyrene on the survival and reproduction of a common freshwater invertebrate, the rotifer Brachionus calyciflorus, at different timescales. We used pristine polystyrene spheres of 1, 3, and 6 µm diameter and fed them to the animals together with food algae in different ratios ranging from 0 to 50\% nonfood particles. As a particle control, we used silica to distinguish between a pure particle effect and a plastic effect. After 24 h, no toxic effect was found, neither with polystyrene nor with silica. After 96 h, a toxic effect was detectable for both particle types. The size of the particles played a negligible role. Studying the long-term effect by using life table experiments, we found a reduced reproduction when the animals were fed with 3 µm spheres together with similar-sized food algae. We conclude that the fitness reduction is mainly driven by the dilution of food by the nonfood particles rather than by a direct toxic effect.}, language = {en} } @phdthesis{Drago2022, author = {Drago, Claudia}, title = {Microplastics in the environment: Assessing the ingestion and effect of microplastics on freshwater rotifers in an environmental scenario}, doi = {10.25932/publishup-57335}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-573356}, school = {Universit{\"a}t Potsdam}, pages = {xv, 116}, year = {2022}, abstract = {Microplastics in the environments are estimated to increase in the near future due to increasing consumption of plastic product and also due to further fragmentation in small pieces. The fate and effects of MP once released into the freshwater environment are still scarcely studied, compared to the marine environment. In order to understand possible effect and interaction of MPs in freshwater environment, planktonic zooplankton organisms are very useful for their crucial trophic role. In particular freshwater rotifers are one of the most abundant organisms and they are the interface between primary producers and secondary consumers. The aim of my thesis was to investigate the ingestion and the effect of MPs in rotifers from a more natural scenario and to individuate processes such as the aggregation of MPs, the food dilution effect and the increasing concentrations of MPs that could influence the final outcome of MPs in the environment. In fact, in a near natural scenario MPs interaction with bacteria and algae, aggregations together with the size and concentration are considered drivers of ingestion and effect. The aggregation of MPs makes smaller MPs more available for rotifers and larger MPs less ingested. The negative effect caused by the ingestion of MPs was modulated by their size but also by the quantity and the quality of food that cause variable responses. In fact, rotifers in the environment are subjected to food limitation and the presence of MPs could exacerbate this condition and decrease the population and the reproduction input. Finally, in a scenario incorporating an entire zooplanktonic community, MPs were ingested by most individuals taking into account their feeding mode but also the concentration of MPs, which was found to be essential for the availability of MPs. This study highlights the importance to investigate MPs from a more environmental perspective, this in fact could provide an alternative and realistic view of effect of MPs in the ecosystem.}, language = {en} } @misc{DragoWeithoff2021, author = {Drago, Claudia and Weithoff, Guntram}, title = {Variable Fitness Response of Two Rotifer Species Exposed to Microplastics Particles}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1248}, issn = {1866-8372}, doi = {10.25932/publishup-55261}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-552615}, pages = {13}, year = {2021}, abstract = {Plastic pollution is an increasing environmental problem, but a comprehensive understanding of its effect in the environment is still missing. The wide variety of size, shape, and polymer composition of plastics impedes an adequate risk assessment. We investigated the effect of differently sized polystyrene beads (1-, 3-, 6-µm; PS) and polyamide fragments (5-25 µm, PA) and non-plastics items such as silica beads (3-µm, SiO2) on the population growth, reproduction (egg ratio), and survival of two common aquatic micro invertebrates: the rotifer species Brachionus calyciflorus and Brachionus fernandoi. The MPs were combined with food quantity, limiting and saturating food concentration, and with food of different quality. We found variable fitness responses with a significant effect of 3-µm PS on the population growth rate in both rotifer species with respect to food quantity. An interaction between the food quality and the MPs treatments was found in the reproduction of B. calyciflorus. PA and SiO2 beads had no effect on fitness response. This study provides further evidence of the indirect effect of MPs in planktonic rotifers and the importance of testing different environmental conditions that could influence the effect of MPs.}, language = {en} }