@misc{CohenCampisanoArrowsmithetal.2016, author = {Cohen, Abby and Campisano, Christopher and Arrowsmith, J. Ramon and Asrat, Asfawossen and Behrensmeyer, A. K. and Deino, A. and Feibel, C. and Hill, A. and Johnson, R. and Kingston, J. and Lamb, Henry F. and Lowenstein, T. and Noren, A. and Olago, D. and Owen, Richard Bernhart and Potts, R. and Reed, Kate and Renaut, R. and Sch{\"a}bitz, F. and Tiercelin, J.-J. and Trauth, Martin H. and Wynn, J. and Ivory, S. and Brady, K. and O'Grady, R. and Rodysill, J. and Githiri, J. and Russell, Joellen and Foerster, Verena and Dommain, Ren{\´e} and Rucina, J. S. and Deocampo, D. and Russell, J. and Billingsley, A. and Beck, C. and Dorenbeck, G. and Dullo, L. and Feary, D. and Garello, D. and Gromig, R. and Johnson, T. and Junginger, Annett and Karanja, M. and Kimburi, E. and Mbuthia, A. and McCartney, Tannis and McNulty, E. and Muiruri, V. and Nambiro, E. and Negash, E. W. and Njagi, D. and Wilson, J. N. and Rabideaux, N. and Raub, Timothy and Sier, Mark Jan and Smith, P. and Urban, J. and Warren, M. and Yadeta, M. and Yost, Chad and Zinaye, B.}, title = {The Hominin Sites and Paleolakes Drilling Project}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {611}, doi = {10.25932/publishup-41249}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412498}, pages = {16}, year = {2016}, abstract = {The role that climate and environmental history may have played in influencing human evolution has been the focus of considerable interest and controversy among paleoanthropologists for decades. Prior attempts to understand the environmental history side of this equation have centered around the study of outcrop sediments and fossils adjacent to where fossil hominins (ancestors or close relatives of modern humans) are found, or from the study of deep sea drill cores. However, outcrop sediments are often highly weathered and thus are unsuitable for some types of paleoclimatic records, and deep sea core records come from long distances away from the actual fossil and stone tool remains. The Hominin Sites and Paleolakes Drilling Project (HSPDP) was developed to address these issues. The project has focused its efforts on the eastern African Rift Valley, where much of the evidence for early hominins has been recovered. We have collected about 2 km of sediment drill core from six basins in Kenya and Ethiopia, in lake deposits immediately adjacent to important fossil hominin and archaeological sites. Collectively these cores cover in time many of the key transitions and critical intervals in human evolutionary history over the last 4 Ma, such as the earliest stone tools, the origin of our own genus Homo, and the earliest anatomically modern Homo sapiens. Here we document the initial field, physical property, and core description results of the 2012-2014 HSPDP coring campaign.}, language = {en} } @phdthesis{Junginger2011, author = {Junginger, Annett}, title = {East African climate variability on different time scales : the Suguta Valley in the African-Asian Monsoon Domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56834}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Motivation | Societal and economic needs of East Africa rely entirely on the availability of water, which is governed by the regular onset and retreat of the rainy seasons. Fluctuations in the amounts of rainfall has tremendous impact causing widespread famine, disease outbreaks and human migrations. Efforts towards high resolution forecasting of seasonal precipitation and hydrological systems are therefore needed, which requires high frequency short to long-term analyses of available climate data that I am going to present in this doctoral thesis by three different studies. 15,000 years - Suguta Valley | The main study of this thesis concentrated on the understanding of humidity changes within the last African Humid Period (AHP, 14.8-5.5 ka BP). The nature and causes of intensity variations of the West-African (WAM) and Indian Summer monsoons (ISM) during the AHP, especially their exact influence on regional climate relative to each other, is currently intensely debated. Here, I present a high-resolution multiproxy lake-level record spanning the AHP from the remote Suguta Valley in the northern Kenya Rift, located between the WAM and ISM domains. The presently desiccated valley was during the AHP filled by a 300 m deep and 2200 km2 large palaeo-lake due to an increase in precipitation of only 26\%. The record explains the synchronous onset of large lakes in the East African Rift System (EARS) with the longitudinal shift of the Congo Air Boundary (CAB) over the East African and Ethiopian Plateaus, as the direct consequence of an enhanced atmospheric pressure gradient between East-Africa and India due to a precessional-forced northern hemisphere insolation maximum. Pronounced, and abrupt lake level fluctuations during the generally wet AHP are explained by small-scale solar irradiation changes weakening this pressure gradient atmospheric moisture availability preventing the CAB from reaching the study area. Instead, the termination of the AHP occurred, in a non-linear manner due to a change towards an equatorial insolation maximum ca. 6.5 ka ago extending the AHP over Ethiopia and West-Africa. 200 years - Lake Naivasha | The second part of the thesis focused on the analysis of a 200 year-old sediment core from Lake Naivasha in the Central Kenya Rift, one of the very few present freshwater lakes in East Africa. The results revealed and confirmed, that the appliance of proxy records for palaeo-climate reconstruction for the last 100 years within a time of increasing industrialisation and therefore human impact to the proxy-record containing sites are broadly limited. Since the middle of the 20th century, intense anthropogenic activity around Lake Naivasha has led to cultural eutrophication, which has overprinted the influence of natural climate variation to the lake usually inferred from proxy records such as diatoms, transfer-functions, geochemical and sedimentological analysis as used in this study. The results clarify the need for proxy records from remote unsettled areas to contribute with pristine data sets to current debates about anthropologic induced global warming since the past 100 years. 14 years - East African Rift | In order to avoid human influenced data sets and validate spatial and temporal heterogeneities of proxy-records from East Africa, the third part of the thesis therefore concentrated on the most recent past 14 years (1996-2010) detecting climate variability by using remotely sensed rainfall data. The advancement in the spatial coverage and temporal resolutions of rainfall data allow a better understanding of influencing climate mechanisms and help to better interpret proxy-records from the EARS in order to reconstruct past climate conditions. The study focuses on the dynamics of intraseasonal rainfall distribution within catchments of eleven lake basins in the EARS that are often used for palaeo-climate studies. We discovered that rainfall in adjacent basins exhibits high complexities in the magnitudes of intraseasonal variability, biennial to triennial precipitation patterns and even are not necessarily correlated often showing opposite trends. The variability among the watersheds is driven by the complex interaction of topography, in particular the shape, length and elevation of the catchment and its relative location to the East African Rift System and predominant influence of the ITCZ or CAB, whose locations and intensities are dependent on the strength of low pressure cells over India, SST variations in the Atlantic, Pacific or Indian Ocean, QBO phases and the 11-year solar cycle. Among all seasons we observed, January-September is the season of highest and most complex rainfall variability, especially for the East African Plateau basins, most likely due to the irregular penetration and sensitivity of the CAB.}, language = {en} }