@misc{LichtDupontNivetPullenetal.2016, author = {Licht, Alexis and Dupont-Nivet, Guillaume and Pullen, Alex and Kapp, Paul and Abels, Hemmo A. and Lai, Zulong and Guo, ZhaoJie and Abell, Jordan and Giesler, Dominique}, title = {Resilience of the Asian atmospheric circulation shown by paleogene dust provenance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1114}, issn = {1866-8372}, doi = {10.25932/publishup-43638}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436381}, pages = {8}, year = {2016}, abstract = {The onset of modern central Asian atmospheric circulation is traditionally linked to the interplay of surface uplift of the Mongolian and Tibetan-Himalayan orogens, retreat of the Paratethys sea from central Asia and Cenozoic global cooling. Although the role of these players has not yet been unravelled, the vast dust deposits of central China support the presence of arid conditions and modern atmospheric pathways for the last 25 million years (Myr). Here, we present provenance data from older (42-33 Myr) dust deposits, at a time when the Tibetan Plateau was less developed, the Paratethys sea still present in central Asia and atmospheric pCO(2) much higher. Our results show that dust sources and near-surface atmospheric circulation have changed little since at least 42 Myr. Our findings indicate that the locus of central Asian high pressures and concurrent aridity is a resilient feature only modulated by mountain building, global cooling and sea retreat.}, language = {en} }