@phdthesis{Friese2020, author = {Friese, Andr{\´e}}, title = {Biogeochemistry of ferruginous sediments of Lake Towuti, Sulawesi, Indonesia}, doi = {10.25932/publishup-47535}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475355}, school = {Universit{\"a}t Potsdam}, pages = {xxiv, 233}, year = {2020}, abstract = {Ferruginous conditions were a prominent feature of the oceans throughout the Precambrian Eons and thus throughout much of Earth's history. Organic matter mineralization and diagenesis within the ferruginous sediments that deposited from Earth's early oceans likely played a key role in global biogeochemical cycling. Knowledge of organic matter mineralization in ferruginous sediments, however, remains almost entirely conceptual, as modern analogue environments are extremely rare and largely unstudied, to date. Lake Towuti on the island of Sulawesi, Indonesia is such an analogue environment and the purpose of this PhD project was to investigate the rates and pathways of organic matter mineralization in its ferruginous sediments. Lake Towuti is the largest tectonic lake in Southeast Asia and is hosted in the mafic and ultramafic rocks of the East Sulawesi Ophiolite. It has a maximum water depth of 203 m and is weakly thermally stratified. A well-oygenated surface layer extends to 70 m depth, while waters below 130 m are persistently anoxic. Intensive weathering of the ultramafic catchment feeds the lake with large amounts of iron(oxy)hydroxides while the runoff contains only little sulfate, leading to sulfate-poor (< 20 µM) lake water and anoxic ferruginous conditions below 130 m. Such conditions are analogous to the ferruginous water columns that persisted throughout much of the Archean and Proterozoic eons. Short (< 35 cm) sediment cores were collected from different water depths corresponding to different bottom water redox conditions. Also, a drilling campaign of the International Continental Scientific Drilling Program (ICDP) retrieved a 114 m long sediment core dedicated for geomicrobiological investigations from a water depth of 153 m, well below the depth of oxygen penetration at the time of sampling. Samples collected from these sediment cores form the fundament of this thesis and were used to perform a suite of biogeochemical and microbiological analyses. Geomirobiological investigations depend on uncontaminated samples. However, exploration of subsurface environments relies on drilling, which requires the use of a drilling fluid. Drilling fluid infiltration during drilling can not be avoided. Thus, in order to trace contamination of the sediment core and to identify uncontaminated samples for further analyses a simple and inexpensive technique for assessing contamination during drilling operations was developed and applied during the ICDP drilling campaign. This approach uses an aqeous fluorescent pigment dispersion commonly used in the paint industry as a particulate tracer. It has the same physical properties as conventionally used particulate tracers. However, the price is nearly four orders of magnitude lower solving the main problem of particulate tracer approaches. The approach requires only a minimum of equipment and allows for a rapid contamination assessment potentially even directly on site, while the senstitivity is in the range of already established approaches. Contaminated samples in the drill core were identified and not included for further geomicrobiological investigations. Biogeochemical analyses of short sediment cores showed that Lake Towutis sediments are strongly depleted in electron acceptors commonly used in microbial organic matter mineralization (i.e. oxygen, nitrate, sulfate). Still, the sediments harbor high microbial cell densities, which are a function of redox conditions of Lake Towuti's bottom water. In shallow water depths bottom water oxygenation leads to a higher input of labile organic matter and electron acceptors like sulfate and iron, which promotes a higher microbial abundance. Microbial analyses showed that a versatile microbial community with a potential to perform metabolisms related to iron and sulfate reduction, fermentation as well as methanogenesis inhabits Lake Towuti's surface sediments. Biogeochemical investigations of the upper 12 m of the 114 m sediment core showed that Lake Towuti's sediment is extremely rich in iron with total concentrations up to 2500 µmol cm-3 (20 wt. \%), which makes it the natural sedimentary environment with the highest total iron concentrations studied to date. In the complete or near absence of oxygen, nitrate and sulfate, organic matter mineralization in ferruginous sediments would be expected to proceed anaerobically via the energetically most favorable terminal electron acceptors available - in this case ferric iron. Astonishingly, however, methanogenesis is the dominant (>85 \%) organic matter mineralization process in Lake Towuti's sediment. Reactive ferric iron known to be available for microbial iron reduction is highly abundant throughout the upper 12 m and thus remained stable for at least 60.000 years. The produced methane is not oxidized anaerobically and diffuses out of the sediment into the water column. The proclivity towards methanogenesis, in these very iron-rich modern sediments, implies that methanogenesis may have played a more important role in organic matter mineralization thoughout the Precambrian than previously thought and thus could have been a key contributor to Earth's early climate dynamics. Over the whole sequence of the 114 m long sediment core siderites were identified and characterized using high-resolution microscopic and spectroscopic imaging together with microchemical and geochemical analyses. The data show early diagenetic growth of siderite crystals as a response to sedimentary organic matter mineralization. Microchemical zoning was identified in all siderite crystals. Siderite thus likely forms during diagenesis through growth on primary existing phases and the mineralogical and chemical features of these siderites are a function of changes in redox conditions of the pore water and sediment over time. Identification of microchemical zoning in ancient siderites deposited in the Precambrian may thus also be used to infer siderite growth histories in ancient sedimentary rocks including sedimentary iron formations.}, language = {en} } @misc{VuilleminFrieseAlawietal.2016, author = {Vuillemin, Aur{\`e}le and Friese, Andr{\´e} and Alawi, Mashal and Henny, Cynthia and Nomosatryo, Sulung and Wagner, Dirk and Crowe, Sean A. and Kallmeyer, Jens}, title = {Geomicrobiological features of ferruginous sediments from Lake Towuti, Indonesia}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407312}, pages = {16}, year = {2016}, abstract = {Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site a feature we attribute to the availability of labile organic matter (OM) and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA (eDNA) provided information on aerobic and anaerobic heterotrophs related to Nitrospirae. Chloroflexi, and Therrnoplasmatales. These taxa apparently played a significant role in the degradation of sinking OM. However, eDNA concentrations rapidly decreased with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales, and Methanornicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments showed that microbial populations perform successive metabolisms related to sulfur, iron, and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments.}, language = {en} }