@phdthesis{BayonaViveros2021, author = {Bayona Viveros, Jose}, title = {Constructing global stationary seismicity models from the long-term balance of interseismic strain measurements and earthquake-catalog data}, doi = {10.25932/publishup-50927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509270}, school = {Universit{\"a}t Potsdam}, pages = {ix, 83}, year = {2021}, abstract = {One third of the world's population lives in areas where earthquakes causing at least slight damage are frequently expected. Thus, the development and testing of global seismicity models is essential to improving seismic hazard estimates and earthquake-preparedness protocols for effective disaster-risk mitigation. Currently, the availability and quality of geodetic data along plate-boundary regions provides the opportunity to construct global models of plate motion and strain rate, which can be translated into global maps of forecasted seismicity. Moreover, the broad coverage of existing earthquake catalogs facilitates in present-day the calibration and testing of global seismicity models. As a result, modern global seismicity models can integrate two independent factors necessary for physics-based, long-term earthquake forecasting, namely interseismic crustal strain accumulation and sudden lithospheric stress release. In this dissertation, I present the construction of and testing results for two global ensemble seismicity models, aimed at providing mean rates of shallow (0-70 km) earthquake activity for seismic hazard assessment. These models depend on the Subduction Megathrust Earthquake Rate Forecast (SMERF2), a stationary seismicity approach for subduction zones, based on the conservation of moment principle and the use of regional "geodesy-to-seismicity" parameters, such as corner magnitudes, seismogenic thicknesses and subduction dip angles. Specifically, this interface-earthquake model combines geodetic strain rates with instrumentally-recorded seismicity to compute long-term rates of seismic and geodetic moment. Based on this, I derive analytical solutions for seismic coupling and earthquake activity, which provide this earthquake model with the initial abilities to properly forecast interface seismicity. Then, I integrate SMERF2 interface-seismicity estimates with earthquake computations in non-subduction zones provided by the Seismic Hazard Inferred From Tectonics based on the second iteration of the Global Strain Rate Map seismicity approach to construct the global Tectonic Earthquake Activity Model (TEAM). Thus, TEAM is designed to reduce number, and potentially spatial, earthquake inconsistencies of its predecessor tectonic earthquake model during the 2015-2017 period. Also, I combine this new geodetic-based earthquake approach with a global smoothed-seismicity model to create the World Hybrid Earthquake Estimates based on Likelihood scores (WHEEL) model. This updated hybrid model serves as an alternative earthquake-rate approach to the Global Earthquake Activity Rate model for forecasting long-term rates of shallow seismicity everywhere on Earth. Global seismicity models provide scientific hypotheses about when and where earthquakes may occur, and how big they might be. Nonetheless, the veracity of these hypotheses can only be either confirmed or rejected after prospective forecast evaluation. Therefore, I finally test the consistency and relative performance of these global seismicity models with independent observations recorded during the 2014-2019 pseudo-prospective evaluation period. As a result, hybrid earthquake models based on both geodesy and seismicity are the most informative seismicity models during the testing time frame, as they obtain higher information scores than their constituent model components. These results support the combination of interseismic strain measurements with earthquake-catalog data for improved seismicity modeling. However, further prospective evaluations are required to more accurately describe the capacities of these global ensemble seismicity models to forecast longer-term earthquake activity.}, language = {en} }