@article{RodaBoludaWhittakerGheorghiuetal.2019, author = {Roda-Boluda, Duna C. and Whittaker, Alexander C. and Gheorghiu, Delia M. and Rodes, Angel and D'Arcy, Mitch}, title = {Be-10 erosion rates controlled by transient response to normal faulting through incision and landsliding}, series = {Earth \& planetary science letters}, volume = {507}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.11.032}, pages = {140 -- 153}, year = {2019}, abstract = {Quantifying erosion rates, and how they compare to rock uplift rates, is fundamental for understanding landscape response to tectonics and associated sediment fluxes from upland areas. The erosional response to uplift is well-represented by river incision and the associated landslide activity. However, characterising the relationship between these processes remains a major challenge in tectonically active areas, in some cases because landslides can preclude obtaining reliable erosion rates from cosmogenic radionuclide (CRN) concentrations. Here, we quantify the control of tectonics and its coupled geomorphic response on the erosion rates of catchments in southern Italy that are experiencing a transient response to normal faulting. We analyse in-situ Be-10 concentrations for detrital sediment samples, collected along the strike of faults with excellent tectonic constraints and landslide inventories. We demonstrate that Be-10-derived erosion rates are controlled by fault throw rates and the extent of transient incision and associated landsliding in the catchments. We show that the low-relief sub-catchments above knickpoints erode at uniform background rates of similar to 0.10 mm/yr, while downstream of knickpoints, erosion removes similar to 50\% of the rock uplifted by the faults, at rates of 0.10-0.64 mm/yr. Despite widespread landsliding, CRN samples provide relatively consistent and accurate erosion rates, most likely because landslides are frequent, small, and shallow, and represent the integrated record of landsliding over several seismic cycles. Consequently, we combine these validated Be-10 erosion rates and data from a geomorphological landslide inventory in a published numerical model, to gain further insight into the long-term landslide rates and sediment mixing, highlighting the potential of CRN data to study landslide dynamics. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{LunaBookhagenNiedermannetal.2018, author = {Luna, Lisa Victoria and Bookhagen, Bodo and Niedermann, Samuel and Rugel, Georg and Scharf, Andreas and Merchel, Silke}, title = {Glacial chronology and production rate cross-calibration of five cosmogenic nuclide and mineral systems from the southern Central Andean Plateau}, series = {Earth \& planetary science letters}, volume = {500}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.07.034}, pages = {242 -- 253}, year = {2018}, abstract = {Glacial deposits on the high-altitude, arid southern Central Andean Plateau (CAP), the Puna in northwestern Argentina, document past changes in climate, but the associated geomorphic features have rarely been directly dated. This study provides direct age control of glacial moraine deposits from the central Puna (24 degrees S) at elevations of 3900-5000 m through surface exposure dating with cosmogenic nuclides. Our results show that the most extensive glaciations occurred before 95 ka and an additional major advance occurred between 46 and 39 ka. The latter period is synchronous with the highest lake levels in the nearby Pozuelos basin and the Minchin (Inca Huasi) wet phase on the Altiplano in the northern CAP. None of the dated moraines produced boulder ages corresponding to the Tauca wet phase (24-15 ka). Additionally, the volcanic lithologies of the deposits allow us to establish production ratios at low latitude and high elevation for five different nuclide and mineral systems: Be-10, Ne-21, and Al-26 from quartz (11 or 12 samples) and He-3 and Ne-21 from pyroxene (10 samples). We present production ratios for all combinations of the measured nuclides and cross-calibrated production rates for 21Ne in pyroxene and quartz for the high, (sub-)tropical Andes. The production rates are based on our Be-10-normalized production ratios and a weighted mean of reference 10Be production rates calibrated in the high, tropical Andes (4.02 +/- 0.12 at g(-1) yr(-1)). These are, Ne-21(qtz): 18.1 +/- 1.2 at g(-1) yr(-1) and Ne-21(px): 36.6 +/- 1.8 at g(-1) yr(-1) (En(88-94)) scaled to sea level and high latitude using the Lal/Stone scheme, with 1 sigma uncertainties. As He-3 and Al-26 have been directly calibrated in the tropical Andes, we recommend using those rates. Finally, we compare exposure ages calculated using all measured cosmogenic nuclides from each sample, including 11 feldspar samples measured for Cl-36, and a suite of previously published production rates. (C) 2018 Published by Elsevier B.V.}, language = {en} } @phdthesis{Eugster2018, author = {Eugster, Patricia}, title = {Landscape evolution in the western Indian Himalaya since the Miocene}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420329}, school = {Universit{\"a}t Potsdam}, pages = {XXI, 208}, year = {2018}, abstract = {The Himalayan arc stretches >2500 km from east to west at the southern edge of the Tibetan Plateau, representing one of the most important Cenozoic continent-continent collisional orogens. Internal deformation processes and climatic factors, which drive weathering, denudation, and transport, influence the growth and erosion of the orogen. During glacial times wet-based glaciers sculpted the mountain range and left overdeepend and U-shaped valleys, which were backfilled during interglacial times with paraglacial sediments over several cycles. These sediments partially still remain within the valleys because of insufficient evacuation capabilities into the foreland. Climatic processes overlay long-term tectonic processes responsible for uplift and exhumation caused by convergence. Possible processes accommodating convergence within the orogenic wedge along the main Himalayan faults, which divide the range into four major lithologic units, are debated. In this context, the identification of processes shaping the Earth's surface on short- and on long-term are crucial to understand the growth of the orogen and implications for landscape development in various sectors along the arc. This thesis focuses on both surface and tectonic processes that shape the landscape in the western Indian Himalaya since late Miocene. In my first study, I dated well-preserved glacially polished bedrock on high-elevated ridges and valley walls in the upper of the Chandra Valley the by means of 10Be terrestrial cosmogenic radionuclides (TCN). I used these ages and mapped glacial features to reconstruct the extent and timing of Pleistocene glaciation at the southern front of the Himalaya. I was able to reconstruct an extensive valley glacier of ~200 km length and >1000 m thickness. Deglaciation of the Chandra Valley glacier started subsequently to insolation increase on the Northern Hemisphere and thus responded to temperature increase. I showed that the timing this deglaciation onset was coeval with retreat of further midlatitude glaciers on the Northern and Southern Hemispheres. These comparisons also showed that the post-LGM deglaciation very rapid, occurred within a few thousand years, and was nearly finished prior to the B{\o}lling/Aller{\o}d interstadial. A second study (co-authorship) investigates how glacial advances and retreats in high mountain environments impact the landscape. By 10Be TCN dating and geomorphic mapping, we obtained maximal length and height of the Siachen Glacier within the Nubra Valley. Today the Shyok and Nubra confluence is backfilled with sedimentary deposits, which are attributed to the valley blocking of the Siachen Glacier 900 m above the present day river level. A glacial dam of the Siachen Glacier blocked the Shyok River and lead to the evolution of a more than 20 km long lake. Fluvial and lacustrine deposits in the valley document alternating draining and filling cycles of the lake dammed by the Siachen Glacier. In this study, we can show that glacial incision was outpacing fluvial incision. In the third study, which spans the million-year timescale, I focus on exhumation and erosion within the Chandra and Beas valleys. In this study the position and discussed possible reasons of rapidly exhuming rocks, several 100-km away from one of the main Himalayan faults (MFT) using Apatite Fission Track (AFT) thermochronometry. The newly gained AFT ages indicate rapid exhumation and confirm earlier studies in the Chandra Valley. I assume that the rapid exhumation is most likely related to uplift over subsurface structures. I tested this hypothesis by combining further low-temperature thermochronometers from areas east and west of my study area. By comparing two transects, each parallel to the Beas/Chandra Valley transect, I demonstrate similarities in the exhumation pattern to transects across the Sutlej region, and strong dissimilarities in the transect crossing the Dhauladar Range. I conclude that the belt of rapid exhumation terminates at the western end of the Kullu-Rampur window. Therewith, I corroborate earlier studies suggesting changes in exhumation behavior in the western Himalaya. Furthermore, I discussed several causes responsible for the pronounced change in exhumation patterns along strike: 1) the role of inherited pre-collisional features such as the Proterozoic sedimentary cover of the Indian basement, former ridges and geological structures, and 2) the variability of convergence rates along the Himalayan arc due to an increased oblique component towards the syntaxis. The combination of field observations (geological and geomorphological mapping) and methods to constrain short- and long-term processes (10Be, AFT) help to understand the role of the individual contributors to exhumation and erosion in the western Indian Himalaya. With the results of this thesis, I emphasize the importance of glacial and tectonic processes in shaping the landscape by driving exhumation and erosion in the studied areas.}, language = {en} } @article{RosenwinkelLandgrafSchwanghartetal.2017, author = {Rosenwinkel, Swenja and Landgraf, Angela and Schwanghart, Wolfgang and Volkmer, Friedrich and Dzhumabaeva, Atyrgul and Merchel, Silke and Rugel, Georg and Preusser, Frank and Korup, Oliver}, title = {Late Pleistocene outburst floods from Issyk Kul, Kyrgyzstan?}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {42}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4109}, pages = {1535 -- 1548}, year = {2017}, language = {en} } @phdthesis{Mey2016, author = {Mey, J{\"u}rgen}, title = {Intermontane valley fills}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103158}, school = {Universit{\"a}t Potsdam}, pages = {xii, 111}, year = {2016}, abstract = {Sedimentary valley fills are a widespread characteristic of mountain belts around the world. They transiently store material over time spans ranging from thousands to millions of years and therefore play an important role in modulating the sediment flux from the orogen to the foreland and to oceanic depocenters. In most cases, their formation can be attributed to specific fluvial conditions, which are closely related to climatic and tectonic processes. Hence, valley-fill deposits constitute valuable archives that offer fundamental insight into landscape evolution, and their study may help to assess the impact of future climate change on sediment dynamics. In this thesis I analyzed intermontane valley-fill deposits to constrain different aspects of the climatic and tectonic history of mountain belts over multiple timescales. First, I developed a method to estimate the thickness distribution of valley fills using artificial neural networks (ANNs). Based on the assumption of geometrical similarity between exposed and buried parts of the landscape, this novel and highly automated technique allows reconstructing fill thickness and bedrock topography on the scale of catchments to entire mountain belts. Second, I used the new method for estimating the spatial distribution of post-glacial sediments that are stored in the entire European Alps. A comparison with data from exploratory drillings and from geophysical surveys revealed that the model reproduces the measurements with a root mean squared error (RMSE) of 70m and a coefficient of determination (R2) of 0.81. I used the derived sediment thickness estimates in combination with a model of the Last Glacial Maximum (LGM) icecap to infer the lithospheric response to deglaciation, erosion and deposition, and deduce their relative contribution to the present-day rock-uplift rate. For a range of different lithospheric and upper mantle-material properties, the results suggest that the long-wavelength uplift signal can be explained by glacial isostatic adjustment with a small erosional contribution and a substantial but localized tectonic component exceeding 50\% in parts of the Eastern Alps and in the Swiss Rh{\^o}ne Valley. Furthermore, this study reveals the particular importance of deconvolving the potential components of rock uplift when interpreting recent movements along active orogens and how this can be used to constrain physical properties of the Earth's interior. In a third study, I used the ANN approach to estimate the sediment thickness of alluviated reaches of the Yarlung Tsangpo River, upstream of the rapidly uplifting Namche Barwa massif. This allowed my colleagues and me to reconstruct the ancient river profile of the Yarlung Tsangpo, and to show that in the past, the river had already been deeply incised into the eastern margin of the Tibetan Plateau. Dating of basal sediments from drill cores that reached the paleo-river bed to 2-2.5 Ma are consistent with mineral cooling ages from the Namche Barwa massif, which indicate initiation of rapid uplift at ~4 Ma. Hence, formation of the Tsangpo gorge and aggradation of the voluminous valley fill was most probably a consequence of rapid uplift of the Namche Barwa massif and thus tectonic activity. The fourth and last study focuses on the interaction of fluvial and glacial processes at the southeastern edge of the Karakoram. Paleo-ice-extent indicators and remnants of a more than 400-m-thick fluvio-lacustrine valley fill point to blockage of the Shyok River, a main tributary of the upper Indus, by the Siachen Glacier, which is the largest glacier in the Karakoram Range. Field observations and 10Be exposure dating attest to a period of recurring lake formation and outburst flooding during the penultimate glaciation prior to ~110 ka. The interaction of Rivers and Glaciers all along the Karakorum is considered a key factor in landscape evolution and presumably promoted headward erosion of the Indus-Shyok drainage system into the western margin of the Tibetan Plateau. The results of this thesis highlight the strong influence of glaciation and tectonics on valley-fill formation and how this has affected the evolution of different mountain belts. In the Alps valley-fill deposition influenced the magnitude and pattern of rock uplift since ice retreat approximately 17,000 years ago. Conversely, the analyzed valley fills in the Himalaya are much older and reflect environmental conditions that prevailed at ~110 ka and ~2.5 Ma, respectively. Thus, the newly developed method has proven useful for inferring the role of sedimentary valley-fill deposits in landscape evolution on timescales ranging from 1,000 to 10,000,000 years.}, language = {en} } @article{DeyThiedeSchildgenetal.2016, author = {Dey, Saptarshi and Thiede, Rasmus Christoph and Schildgen, Taylor F. and Wittmann, Hella and Bookhagen, Bodo and Scherler, Dirk and Strecker, Manfred}, title = {Holocene internal shortening within the northwest Sub-Himalaya: Out-of-sequence faulting of the Jwalamukhi Thrust, India}, series = {Tectonics}, volume = {35}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2015TC004002}, pages = {2677 -- 2697}, year = {2016}, abstract = {The southernmost thrust of the Himalayan orogenic wedge that separates the foreland from the orogen, the Main Frontal Thrust, is thought to accommodate most of the ongoing crustal shortening in the Sub-Himalaya. Steepened longitudinal river profile segments, terrace offsets, and back-tilted fluvial terraces within the Kangra reentrant of the NW Sub-Himalaya suggest Holocene activity of the Jwalamukhi Thrust (JMT) and other thrust faults that may be associated with strain partitioning along the toe of the Himalayan wedge. To assess the shortening accommodated by the JMT, we combine morphometric terrain analyses with in situ Be-10-based surface-exposure dating of the deformed terraces. Incision into upper Pleistocene sediments within the Kangra Basin created two late Pleistocene terrace levels (T1 and T2). Subsequent early Holocene aggradation shortly before similar to 10ka was followed by episodic reincision, which created four cut-and-fill terrace levels, the oldest of which (T3) was formed at 10.10.9ka. A vertical offset of 445m of terrace T3 across the JMT indicates a shortening rate of 5.60.8 to 7.51.1mma(-1) over the last similar to 10ka. This result suggests that thrusting along the JMT accommodates 40-60\% of the total Sub-Himalayan shortening in the Kangra reentrant over the Holocene. We speculate that this out-of-sequence shortening may have been triggered or at least enhanced by late Pleistocene and Holocene erosion of sediments from the Kangra Basin.}, language = {en} } @article{KoberZeilingerHippeetal.2015, author = {Kober, Florian and Zeilinger, Gerold and Hippe, Kristina and Marc, Odin and Lendzioch, Theodora and Grischott, Reto and Christl, Marcus and Kubik, Peter W. and Zola, Ramiro}, title = {Tectonic and lithological controls on denudation rates in the central Bolivian Andes}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {657}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2015.06.037}, pages = {230 -- 244}, year = {2015}, abstract = {The topographic signature of a mountain belt depends on the interplay of tectonic, climatic and erosional processes, whose relative importance changes over times, while quantifying these processes and their rates at specific times remains a challenge. The eastern Andes of central Bolivia offer a natural laboratory in which such interplay has been debated. Here, we investigate the Rio Grande catchment which crosses orthogonally the eastern Andes orogen from the Eastern Cordillera into the Subandean Zone, exhibiting a catchment relief of up to 5000 m. Despite an enhanced tectonic activity in the Subandes, local relief, mean and modal slopes and channel steepness indices are largely similar compared to the Eastern Cordillera and the intervening Interandean Zone. Nevertheless, a dataset of 57 new cosmogenic 10Be and 26AI catchment wide denudation rates from the Rio Grande catchment reveals up to one order of magnitude higher denudation rates in the Subandean Zone (mean 0.8 mm/yr) compared to the upstream physiographic regions. We infer that tectonic activity in the thrusting dominated Subandean belt causes higher denudation rates based on cumulative rock uplift investigations and due to the absence of a pronounced climate gradient. Furthermore, the lower rock strength of the Subandean sedimentary units correlates with mean slopes similar to the ones of the Eastern Cordillera and Interandean Zone, highlighting the fact, that lithology and rock strength can control high denudation rates at low slopes. Low denudation rates measured at the outlet of the Rio Grande catchment (Abapo) are interpreted to be a result of a biased cosmogenic nuclide mixing that is dominated by headwater signals from the Eastern Cordillera and the Interandean zone and limited catchment sediment connectivity in the lower river reaches. Therefore, comparisons of short- (i.e., sediment yield) and millennial denudation rates require caution when postulating tectonic and/or climatic forcing without detailed studies. (C) 2015 The Authors. Published by Elsevier B.V.}, language = {en} } @phdthesis{Munack2014, author = {Munack, Henry}, title = {From phantom blocks to denudational noise}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72629}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 172}, year = {2014}, abstract = {Knowing the rates and mechanisms of geomorphic process that shape the Earth's surface is crucial to understand landscape evolution. Modern methods for estimating denudation rates enable us to quantitatively express and compare processes of landscape downwearing that can be traced through time and space—from the seemingly intact, though intensely shattered, phantom blocks of the catastrophically fragmented basal facies of giant rockslides up to denudational noise in orogen-wide data sets averaging over several millennia. This great variety of spatiotemporal scales of denudation rates is both boon and bane of geomorphic process rates. Indeed, processes of landscape downwearing can be traced far back in time, helping us to understand the Earth's evolution. Yet, this benefit may turn into a drawback due to scaling issues if these rates are to be compared across different observation timescales. This thesis investigates the mechanisms, patterns and rates of landscape downwearing across the Himalaya-Tibet orogen. Accounting for the spatiotemporal variability of denudation processes, this thesis addresses landscape downwearing on three distinctly different spatial scales, starting off at the local scale of individual hillslopes where considerable amounts of debris are generated from rock instantaneously: Rocksliding in active mountains is a major impetus of landscape downwearing. Study I provides a systematic overview of the internal sedimentology of giant rockslide deposits and thus meets the challenge of distinguishing them from macroscopically and microscopically similar glacial deposits, tectonic fault-zone breccias, and impact breccias. This distinction is important to avoid erroneous or misleading deduction of paleoclimatic or tectonic implications. -> Grain size analysis shows that rockslide-derived micro-breccia closely resemble those from meteorite impact or tectonic faults. -> Frictionite may occur more frequently that previously assumed. -> M{\"o}ssbauer-spectroscopy derived results indicate basal rock melting in the absence of water, involving short-term temperatures of >1500°C. Zooming out, Study II tracks the fate of these sediments, using the example of the upper Indus River, NW India. There we use river sand samples from the Indus and its tributaries to estimate basin-averaged denudation rates along a ~320-km reach across the Tibetan Plateau margin, to answer the question whether incision into the western Tibetan Plateau margin is currently active or not. -> We find an about one-order-of-magnitude upstream decay—from 110 to 10 mm kyr^-1—of cosmogenic Be-10-derived basin-wide denudation rates across the morphological knickpoint that marks the transition from the Transhimalayan ranges to the Tibetan Plateau. This trend is corroborated by independent bulk petrographic and heavy mineral analysis of the same samples. -> From the observation that tributary-derived basin-wide denudation rates do not increase markedly until ~150-200 km downstream of the topographic plateau margin we conclude that incision into the Tibetan Plateau is inactive. -> Comparing our postglacial Be-10-derived denudation rates to long-term (>10^6 yr) estimates from low-temperature thermochronometry, ranging from 100 to 750 mm kyr^-1, points to an order- of-magnitude decay of rates of landscape downwearing towards present. We infer that denudation rates must have been higher in the Quaternary, probably promoted by the interplay of glacial and interglacial stages. Our investigation of regional denudation patterns in the upper Indus finally is an integral part of Study III that synthesizes denudation of the Himalaya-Tibet orogen. In order to identify general and time-invariant predictors for Be-10-derived denudation rates we analyze tectonic, climatic and topographic metrics from an inventory of 297 drainage basins from various parts of the orogen. Aiming to get insight to the full response distributions of denudation rate to tectonic, climatic and topographic candidate predictors, we apply quantile regression instead of ordinary least squares regression, which has been standard analysis tool in previous studies that looked for denudation rate predictors. -> We use principal component analysis to reduce our set of 26 candidate predictors, ending up with just three out of these: Aridity Index, topographic steepness index, and precipitation of the coldest quarter of the year. -> Topographic steepness index proves to perform best during additive quantile regression. Our consequent prediction of denudation rates on the basin scale involves prediction errors that remain between 5 and 10 mm kyr^-1. -> We conclude that while topographic metrics such as river-channel steepness and slope gradient—being representative on timescales that our cosmogenic Be-10-derived denudation rates integrate over—generally appear to be more suited as predictors than climatic and tectonic metrics based on decadal records.}, language = {en} } @article{ScherlerBookhagenStrecker2014, author = {Scherler, Dirk and Bookhagen, Bodo and Strecker, Manfred}, title = {Tectonic control on Be-10-derived erosion rates in the Garhwal Himalaya, India}, series = {Journal of geophysical research : Earth surface}, volume = {119}, journal = {Journal of geophysical research : Earth surface}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2013JF002955}, pages = {83 -- 105}, year = {2014}, abstract = {Erosion in the Himalaya is responsible for one of the greatest mass redistributions on Earth and has fueled models of feedback loops between climate and tectonics. Although the general trends of erosion across the Himalaya are reasonably well known, the relative importance of factors controlling erosion is less well constrained. Here we present 25 Be-10-derived catchment-averaged erosion rates from the Yamuna catchment in the Garhwal Himalaya, northern India. Tributary erosion rates range between similar to 0.1 and 0.5mmyr(-1) in the Lesser Himalaya and similar to 1 and 2mmyr(-1) in the High Himalaya, despite uniform hillslope angles. The erosion-rate data correlate with catchment-averaged values of 5 km radius relief, channel steepness indices, and specific stream power but to varying degrees of nonlinearity. Similar nonlinear relationships and coefficients of determination suggest that topographic steepness is the major control on the spatial variability of erosion and that twofold to threefold differences in annual runoff are of minor importance in this area. Instead, the spatial distribution of erosion in the study area is consistent with a tectonic model in which the rock uplift pattern is largely controlled by the shortening rate and the geometry of the Main Himalayan Thrust fault (MHT). Our data support a shallow dip of the MHT underneath the Lesser Himalaya, followed by a midcrustal ramp underneath the High Himalaya, as indicated by geophysical data. Finally, analysis of sample results from larger main stem rivers indicates significant variability of Be-10-derived erosion rates, possibly related to nonproportional sediment supply from different tributaries and incomplete mixing in main stem channels.}, language = {en} } @article{MillerSakKirbyetal.2013, author = {Miller, Scott R. and Sak, Peter B. and Kirby, Eric and Bierman, Paul R.}, title = {Neogene rejuvenation of central appalachian topography evidence for differential rock uplift from stream profiles and erosion rates}, series = {Earth \& planetary science letters}, volume = {369}, journal = {Earth \& planetary science letters}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2013.04.007}, pages = {1 -- 12}, year = {2013}, abstract = {The persistence of topography within ancient orogens remains one of the outstanding questions in landscape evolution. In the eastern North American Appalachians, this question is manifest in the outstanding problem of whether topographic relief is in a quasi-equilibrium state, decaying slowly over many millennia, or whether relief has increased during the late Cenozoic. Here we present quantitative geomorphic data from the nonglaciated portion of the Susquehanna River drainage basin that provide insight into these end-member models. Analysis of channel profiles draining upland catchments in the northern Valley and Ridge, Appalachian Plateau, Blue Ridge, and Piedmont provinces reveals that a large number of streams have well defined knickpoints clustered at 300-600 m elevation but not systematically associated with transitions from weak to resistant substrate. Cosmogenic Be-10 inventories of modern stream sediment indicate that erosion rates are spatially variable, ranging from similar to 5-30 m/Myr above knickpoints to similar to 50-100 m/Myr below knickpoints. Overall, channel gradients, normalized for drainage area, scale linearly with catchment-averaged erosion rates. Collectively, regionally consistent spatial relationships among erosion rate, channel steepness, and knickpoints reveal an ongoing wave of transient channel adjustment to a change in relative base level. Reconstructions of relict channel profiles above knickpoints suggest that higher rates of incision are associated with similar to 100-150 m of relative base level fall that accompanied epierogenic rock uplift rather than a change to a more erosive climate or drainage reorganization. Channel response timescales imply that the onset of relative base level change predates similar to 3.5 Ma and may have begun as early as similar to 15 Ma. We suggest that adjustment of the channel network was likely driven by changes in mantle dynamics along the eastern seaboard of North America during the Neogene.}, language = {en} }