@misc{LiMeiXuetal.2020, author = {Li, Yongge and Mei, Ruoxing and Xu, Yong and Kurths, J{\"u}rgen and Duan, Jinqiao and Metzler, Ralf}, title = {Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {974}, issn = {1866-8372}, doi = {10.25932/publishup-47454}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474542}, pages = {28}, year = {2020}, abstract = {This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D ₀), as well as a low (D ₘ) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the It{\^o} calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D ₘ will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D ₘ, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.}, language = {en} } @article{LiMeiXuetal.2020, author = {Li, Yongge and Mei, Ruoxing and Xu, Yong and Kurths, J{\"u}rgen and Duan, Jinqiao and Metzler, Ralf}, title = {Particle dynamics and transport enhancement in a confined channel with position-dependent diffusivity}, series = {New Journal of Physics}, volume = {22}, journal = {New Journal of Physics}, publisher = {Dt. Physikalische Ges.}, address = {Bad Honnef}, issn = {1367-2630}, doi = {10.1088/1367-2630/ab81b9}, pages = {27}, year = {2020}, abstract = {This work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D ₀), as well as a low (D ₘ) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the It{\^o} calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D ₘ will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D ₘ, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed.}, language = {en} } @article{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Hydrology and Earth System Sciences}, volume = {24}, journal = {Hydrology and Earth System Sciences}, number = {5}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-24-2235-2020}, pages = {2235 -- 2251}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @misc{AgarwalMarwanMaheswaranetal.2020, author = {Agarwal, Ankit and Marwan, Norbert and Maheswaran, Rathinasamy and {\"O}zt{\"u}rk, Ugur and Kurths, J{\"u}rgen and Merz, Bruno}, title = {Optimal design of hydrometric station networks based on complex network analysis}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {951}, issn = {1866-8372}, doi = {10.25932/publishup-47100}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471006}, pages = {19}, year = {2020}, abstract = {Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure - the weighted degree-betweenness (WDB) measure - to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail.}, language = {en} } @misc{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-52586}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525863}, pages = {12}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @article{CiemerRehmKurthsetal.2020, author = {Ciemer, Catrin and Rehm, Lars and Kurths, J{\"u}rgen and Donner, Reik Volker and Winkelmann, Ricarda and Boers, Niklas}, title = {An early-warning indicator for Amazon droughts exclusively based on tropical Atlantic sea surface temperatures}, series = {Environmental Research Letters}, volume = {15}, journal = {Environmental Research Letters}, number = {9}, publisher = {IOP - Institute of Physics Publishing}, address = {Bristol}, pages = {10}, year = {2020}, abstract = {Droughts in tropical South America have an imminent and severe impact on the Amazon rainforest and affect the livelihoods of millions of people. Extremely dry conditions in Amazonia have been previously linked to sea surface temperature (SST) anomalies in the adjacent tropical oceans. Although the sources and impacts of such droughts have been widely studied, establishing reliable multi-year lead statistical forecasts of their occurrence is still an ongoing challenge. Here, we further investigate the relationship between SST and rainfall anomalies using a complex network approach. We identify four ocean regions which exhibit the strongest overall SST correlations with central Amazon rainfall, including two particularly prominent regions in the northern and southern tropical Atlantic. Based on the time-dependent correlation between SST anomalies in these two regions alone, we establish a new early-warning method for droughts in the central Amazon basin and demonstrate its robustness in hindcasting past major drought events with lead-times up to 18 months.}, language = {en} } @article{OzturkMalikCheungetal.2019, author = {Ozturk, Ugur and Malik, Nishant and Cheung, Kevin and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {A network-based comparative study of extreme tropical and frontal storm rainfall over Japan}, series = {Climate dynamics : observational, theoretical and computational research on the climate system}, volume = {53}, journal = {Climate dynamics : observational, theoretical and computational research on the climate system}, number = {1-2}, publisher = {Springer}, address = {New York}, issn = {0930-7575}, doi = {10.1007/s00382-018-4597-1}, pages = {521 -- 532}, year = {2019}, abstract = {Frequent and intense rainfall events demand innovative techniques to better predict the extreme rainfall dynamics. This task requires essentially the assessment of the basic types of atmospheric processes that trigger extreme rainfall, and then to examine the differences between those processes, which may help to identify key patterns to improve predictive algorithms. We employ tools from network theory to compare the spatial features of extreme rainfall over the Japanese archipelago and surrounding areas caused by two atmospheric processes: the Baiu front, which occurs mainly in June and July (JJ), and the tropical storms from August to November (ASON). We infer from complex networks of satellite-derived rainfall data, which are based on the nonlinear correlation measure of event synchronization. We compare the spatial scales involved in both systems and identify different regions which receive rainfall due to the large spatial scale of the Baiu and tropical storm systems. We observed that the spatial scales involved in the Baiu driven rainfall extremes, including the synoptic processes behind the frontal development, are larger than tropical storms, which even have long tracks during extratropical transitions. We further delineate regions of coherent rainfall during the two seasons based on network communities, identifying the horizontal (east-west) rainfall bands during JJ over the Japanese archipelago, while during ASON these bands align with the island arc of Japan.}, language = {en} } @article{MaheswaranAgarwalSivakumaretal.2019, author = {Maheswaran, Rathinasamy and Agarwal, Ankit and Sivakumar, Bellie and Marwan, Norbert and Kurths, J{\"u}rgen}, title = {Wavelet analysis of precipitation extremes over India and teleconnections to climate indices}, series = {Stochastic Environmental Research and Risk Assessment}, volume = {33}, journal = {Stochastic Environmental Research and Risk Assessment}, number = {11-12}, publisher = {Springer}, address = {New York}, issn = {1436-3240}, doi = {10.1007/s00477-019-01738-3}, pages = {2053 -- 2069}, year = {2019}, abstract = {Precipitation patterns and extremes are significantly influenced by various climatic factors and large-scale atmospheric circulation patterns. This study uses wavelet coherence analysis to detect significant interannual and interdecadal oscillations in monthly precipitation extremes across India and their teleconnections to three prominent climate indices, namely, Nino 3.4, Pacific Decadal Oscillation, and Indian Ocean Dipole (IOD). Further, partial wavelet coherence analysis is used to estimate the standalone relationship between the climate indices and precipitation after removing the effect of interdependency. The wavelet analysis of monthly precipitation extremes at 30 different locations across India reveals that (a) interannual (2-8 years) and interdecadal (8-32 years) oscillations are statistically significant, and (b) the oscillations vary in both time and space. The results from the partial wavelet coherence analysis reveal that Nino 3.4 and IOD are the significant drivers of Indian precipitation at interannual and interdecadal scales. Intriguingly, the study also confirms that the strength of influence of large-scale atmospheric circulation patterns on Indian precipitation extremes varies with spatial physiography of the region.}, language = {en} } @article{BoersGoswamiRheinwaltetal.2019, author = {Boers, Niklas and Goswami, Bedartha and Rheinwalt, Aljoscha and Bookhagen, Bodo and Hoskins, Brian and Kurths, J{\"u}rgen}, title = {Complex networks reveal global pattern of extreme-rainfall teleconnections}, series = {Nature : the international weekly journal of science}, volume = {566}, journal = {Nature : the international weekly journal of science}, number = {7744}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/s41586-018-0872-x}, pages = {373 -- 377}, year = {2019}, abstract = {Climatic observables are often correlated across long spatial distances, and extreme events, such as heatwaves or floods, are typically assumed to be related to such teleconnections(1,2). Revealing atmospheric teleconnection patterns and understanding their underlying mechanisms is of great importance for weather forecasting in general and extreme-event prediction in particular(3,4), especially considering that the characteristics of extreme events have been suggested to change under ongoing anthropogenic climate change(5-8). Here we reveal the global coupling pattern of extreme-rainfall events by applying complex-network methodology to high-resolution satellite data and introducing a technique that corrects for multiple-comparison bias in functional networks. We find that the distance distribution of significant connections (P < 0.005) around the globe decays according to a power law up to distances of about 2,500 kilometres. For longer distances, the probability of significant connections is much higher than expected from the scaling of the power law. We attribute the shorter, power-law-distributed connections to regional weather systems. The longer, super-power-law-distributed connections form a global rainfall teleconnection pattern that is probably controlled by upper-level Rossby waves. We show that extreme-rainfall events in the monsoon systems of south-central Asia, east Asia and Africa are significantly synchronized. Moreover, we uncover concise links between south-central Asia and the European and North American extratropics, as well as the Southern Hemisphere extratropics. Analysis of the atmospheric conditions that lead to these teleconnections confirms Rossby waves as the physical mechanism underlying these global teleconnection patterns and emphasizes their crucial role in dynamical tropical-extratropical couplings. Our results provide insights into the function of Rossby waves in creating stable, global-scale dependencies of extreme-rainfall events, and into the potential predictability of associated natural hazards.}, language = {en} } @article{KurthsAgarwalShuklaetal.2019, author = {Kurths, J{\"u}rgen and Agarwal, Ankit and Shukla, Roopam and Marwan, Norbert and Maheswaran, Rathinasamy and Caesar, Levke and Krishnan, Raghavan and Merz, Bruno}, title = {Unravelling the spatial diversity of Indian precipitation teleconnections via a non-linear multi-scale approach}, series = {Nonlinear processes in geophysics}, volume = {26}, journal = {Nonlinear processes in geophysics}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1023-5809}, doi = {10.5194/npg-26-251-2019}, pages = {251 -- 266}, year = {2019}, abstract = {A better understanding of precipitation dynamics in the Indian subcontinent is required since India's society depends heavily on reliable monsoon forecasts. We introduce a non-linear, multiscale approach, based on wavelets and event synchronization, for unravelling teleconnection influences on precipitation. We consider those climate patterns with the highest relevance for Indian precipitation. Our results suggest significant influences which are not well captured by only the wavelet coherence analysis, the state-of-the-art method in understanding linkages at multiple timescales. We find substantial variation across India and across timescales. In particular, El Ni{\~n}o-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mainly influence precipitation in the south-east at interannual and decadal scales, respectively, whereas the North Atlantic Oscillation (NAO) has a strong connection to precipitation, particularly in the northern regions. The effect of the Pacific Decadal Oscillation (PDO) stretches across the whole country, whereas the Atlantic Multidecadal Oscillation (AMO) influences precipitation particularly in the central arid and semi-arid regions. The proposed method provides a powerful approach for capturing the dynamics of precipitation and, hence, helps improve precipitation forecasting.}, language = {en} }