@article{SchultzeWirthWunderetal.2021, author = {Schultze, Dina and Wirth, Richard and Wunder, Bernd and Loges, Anselm and Wilke, Max and Franz, Gerhard}, title = {Corundum-quartz metastability}, series = {Contributions to mineralogy and petrology}, volume = {176}, journal = {Contributions to mineralogy and petrology}, number = {4}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {0010-7999}, doi = {10.1007/s00410-021-01786-5}, pages = {13}, year = {2021}, abstract = {The metastable paragenesis of corundum and quartz is rare in nature but common in laboratory experiments where according to thermodynamic predictions aluminum-silicate polymorphs should form. We demonstrate here that the existence of a hydrous, silicon-bearing, nanometer-thick layer (called "HSNL") on the corundum surface can explain this metastability in experimental studies without invoking unspecific kinetic inhibition. We investigated experimentally formed corundum reaction products synthesized during hydrothermal and piston-cylinder experiments at 500-800 degrees C and 0.25-1.8 GPa and found that this HSNL formed inside and on the corundum crystals, thereby controlling the growth behavior of its host. The HSNL represents a substitution of Al with Si and H along the basal plane of corundum. Along the interface of corundum and quartz, the HSNL effectively isolates the bulk phases corundum and quartz from each other, thus apparently preventing their reaction to the stable aluminum silicate. High temperatures and prolonged experimental duration lead to recrystallization of corundum including the HSNL and to the formation of quartz + fluid inclusions inside the host crystal. This process reduces the phase boundary area between the bulk phases, thereby providing further opportunity to expand their coexistence. In addition to its small size, its transient nature makes it difficult to detect the HSNL in experiments and even more so in natural samples. Our findings emphasize the potential impact of nanometer-sized phases on geochemical reaction pathways and kinetics under metamorphic conditions in one of the most important chemical systems of the Earth's crust.}, language = {en} } @article{KlemmeFeldhausPotapkinetal.2021, author = {Klemme, Stephan and Feldhaus, Michael and Potapkin, Vasily and Wilke, Max and Borchert, Manuela and Louvel, Marion and Loges, Anselm and Rohrbach, Arno and Weitkamp, Petra and Welter, Edmund and Kokh, Maria A. and Schmidt, Christian and Testemale, Denis}, title = {A hydrothermal apparatus for x-ray absorption spectroscopy of hydrothermal fluids at DESY}, series = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, volume = {92}, journal = {Review of scientific instruments : a monthly journal devoted to scientific instruments, apparatus, and techniques}, number = {6}, publisher = {AIP Publishing}, address = {Melville}, issn = {0034-6748}, doi = {10.1063/5.0044767}, pages = {6}, year = {2021}, abstract = {We present a new autoclave that enables in situ characterization of hydrothermal fluids at high pressures and high temperatures at synchrotron x-ray radiation sources. The autoclave has been specifically designed to enable x-ray absorption spectroscopy in fluids with applications to mineral solubility and element speciation analysis in hydrothermal fluids in complex compositions. However, other applications, such as Raman spectroscopy, in high-pressure fluids are also possible with the autoclave. First experiments were run at pressures between 100 and 600 bars and at temperatures between 25 degrees C and 550 degrees C, and preliminary results on scheelite dissolution in fluids of different compositions show that the autoclave is well suited to study the behavior of ore-forming metals at P-T conditions relevant to the Earth's crust.}, language = {en} } @article{CerantolaWilkeKantoretal.2019, author = {Cerantola, Valerio and Wilke, Max and Kantor, Innokenty and Ismailova, Leyla and Kupenko, Ilya and McCammon, Catherine and Pascarelli, Sakura and Dubrovinsky, Leonid S.}, title = {Experimental investigation of FeCO3 (siderite) stability in Earth's lower mantle using XANES spectroscopy}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {104}, journal = {American mineralogist : an international journal of earth and planetary materials}, number = {8}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {0003-004X}, doi = {10.2138/am-2019-6428}, pages = {1083 -- 1091}, year = {2019}, abstract = {We studied FeCO3 using Fe K-edge X-ray absorption near-edge structure (XANES) spectroscopy at pressures up to 54 GPa and temperatures above 2000 K. First-principles calculations of Fe at the K-edge in FeCO3 were performed to support the interpretation of the XANES spectra. The variation of iron absorption edge features with pressure and temperature in FeCO3 matches well with recently reported observations on FeCO3 at extreme conditions, and provides new insight into the stability of Fe-carbonates in Earth's mantle. Here we show that at conditions of the mid-lower mantle, ~50 GPa and ~2200 K, FeCO3 melts and partially decomposes to high-pressure Fe3O4. Carbon (diamond) and oxygen are also inferred products of the reaction. We constrained the thermodynamic phase boundary between crystalline FeCO3 and melt to be at 51(1) GPa and ~1850 K. We observe that at 54(1) GPa, temperature-induced spin crossover of Fe2+ takes place from low to high spin such that at 1735(100) K, all iron in FeCO3 is in the high-spin state. A comparison between experiment and theory provides a more detailed understanding of FeCO3 decomposition observed in X-ray absorption spectra and helps to explain spectral changes due to pressure-induced spin crossover in FeCO3 at ambient temperature.}, language = {en} } @article{TaranNunezValdezEfthimiopoulosetal.2019, author = {Taran, Michail N. and Nunez Valdez, Maribel and Efthimiopoulos, Ilias and M{\"u}ller, J. and Reichmann, Hans-Josef and Wilke, Max and Koch-M{\"u}ller, Monika}, title = {Spectroscopic and ab initio studies of the pressure-induced Fe2+ high-spin-to-low-spin electronic transition in natural triphylite-lithiophilite}, series = {Physics and Chemistry of Minerals}, volume = {46}, journal = {Physics and Chemistry of Minerals}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0342-1791}, doi = {10.1007/s00269-018-1001-y}, pages = {245 -- 258}, year = {2019}, abstract = {Using optical absorption and Raman spectroscopic measurements, in conjunction with the first-principles calculations, a pressure-induced high-spin (HS)-to-low-spin (LS) state electronic transition of Fe2+ (M2-octahedral site) was resolved around 76-80GPa in a natural triphylite-lithiophilite sample with chemical composition (LiFe0.7082+Mn0.292PO4)-Li-M1-Fe-M2 (theoretical composition (LiFe0.52+Mn0.5PO4)-Li-M1-Fe-M2). The optical absorption spectra at ambient conditions consist of a broad doublet band with two constituents (1) (similar to 9330cm(-1)) and (2) (similar to 7110cm(-1)), resulting from the electronic spin-allowed transition (T2gEg)-T-5-E-5 of octahedral (HSFe2+)-Fe-M2. Both (1) and (2) bands shift non-linearly with pressure to higher energies up to similar to 55GPa. In the optical absorption spectrum measured at similar to 81GPa, the aforementioned HS-related bands disappear, whereas a new broadband with an intensity maximum close to 16,360cm(-1) appears, superimposed on the tail of the high-energy ligand-to-metal O2-Fe2+ charge-transfer absorption edge. We assign this new band to the electronic spin-allowed dd-transition (1)A(1g)(1)T(1g) of LS Fe2+ in octahedral coordination. The high-pressure Raman spectra evidence the Fe2+ HS-to-LS transition mainly from the abrupt shift of the P-O symmetric stretching modes to lower frequencies at similar to 76GPa, the highest pressure achieved in the Raman spectroscopic experiments. Calculations indicated that the presence of Mn-M2(2+) simply shifts the isostructural HS-to-LS transition to higher pressures compared to the triphylite Fe-M2(2+) end-member, in qualitative agreement with our experimental observations.}, language = {en} } @article{PetitgirardSahleWeisetal.2019, author = {Petitgirard, Sylvian and Sahle, C. J. and Weis, C. and Gilmore, K. and Spiekermann, Georg and Tse, J. S. and Wilke, Max and Cavallari, C. and Cerantola, V and Sternemann, Christian}, title = {Magma properties at deep Earth's conditions from electronic structure of silica}, series = {Geochemical perspectives letters}, volume = {9}, journal = {Geochemical perspectives letters}, publisher = {Association of Geochemistry}, address = {Paris}, issn = {2410-339X}, doi = {10.7185/geochemlet.1902}, pages = {32 -- 37}, year = {2019}, abstract = {SiO(2 )is the main component of silicate melts and thus controls their network structure and physical properties. The compressibility and viscosities of melts at depth are governed by their short range atomic and electronic structure. We measured the O K-edge and the Si L-2,L-3-edge in silica up to 110 GPa using X-ray Raman scattering spectroscopy, and found a striking match to calculated spectra based on structures from molecular dynamic simulations. Between 20 and 27 GPa, Si-[4] species are converted into a mixture of Si-[5] and Si-[6] species and between 60 and 70 GPa, Si-[6] becomes dominant at the expense of Si-[5] with no further increase up to at least 110 GPa. Coordination higher than 6 is only reached beyond 140 GPa, corroborating results from Brillouin scattering. Network modifying elements in silicate melts may shift this change in coordination to lower pressures and thus magmas could be denser than residual solids at the depth of the core-mantle boundary.}, language = {en} } @misc{SpiekermannHarderGilmoreetal.2019, author = {Spiekermann, Georg and Harder, M. and Gilmore, Keith and Zalden, Peter and Sahle, Christoph J. and Petitgirard, Sylvain and Wilke, Max and Biedermann, Nicole and Weis, Thomas and Morgenroth, Wolfgang and Tse, John S. and Kulik, E. and Nishiyama, Norimasa and Yava{\c{s}}, Hasan and Sternemann, Christian}, title = {Persistent Octahedral Coordination in Amorphous GeO₂ Up to 100 GPa by Kβ'' X-Ray Emission Spectroscopy}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {699}, issn = {1866-8372}, doi = {10.25932/publishup-42775}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427755}, year = {2019}, abstract = {We measure valence-to-core x-ray emission spectra of compressed crystalline GeO₂ up to 56 GPa and of amorphous GeO₂ up to 100 GPa. In a novel approach, we extract the Ge coordination number and mean Ge-O distances from the emission energy and the intensity of the Kβ'' emission line. The spectra of high-pressure polymorphs are calculated using the Bethe-Salpeter equation. Trends observed in the experimental and calculated spectra are found to match only when utilizing an octahedral model. The results reveal persistent octahedral Ge coordination with increasing distortion, similar to the compaction mechanism in the sequence of octahedrally coordinated crystalline GeO₂ high-pressure polymorphs.}, language = {en} } @article{SpiekermannHarderGilmoreetal.2019, author = {Spiekermann, Georg and Harder, M. and Gilmore, Keith and Zalden, Peter and Sahle, Christoph J. and Petitgirard, Sylvain and Wilke, Max and Biedermann, Nicole and Weis, Thomas and Morgenroth, Wolfgang and Tse, John S. and Kulik, E. and Nishiyama, Norimasa and Yava{\c{s}}, Hasan and Sternemann, Christian}, title = {Persistent Octahedral Coordination in Amorphous GeO₂ Up to 100 GPa by Kβ'' X-Ray Emission Spectroscopy}, series = {Physical Review X}, volume = {9}, journal = {Physical Review X}, number = {1}, publisher = {American Physical Society by the American Institute of Physics}, address = {Melville, NY}, issn = {2469-9926}, doi = {10.1103/PhysRevX.9.011025}, pages = {10}, year = {2019}, abstract = {We measure valence-to-core x-ray emission spectra of compressed crystalline GeO₂ up to 56 GPa and of amorphous GeO₂ up to 100 GPa. In a novel approach, we extract the Ge coordination number and mean Ge-O distances from the emission energy and the intensity of the Kβ'' emission line. The spectra of high-pressure polymorphs are calculated using the Bethe-Salpeter equation. Trends observed in the experimental and calculated spectra are found to match only when utilizing an octahedral model. The results reveal persistent octahedral Ge coordination with increasing distortion, similar to the compaction mechanism in the sequence of octahedrally coordinated crystalline GeO₂ high-pressure polymorphs.}, language = {en} } @article{BenardKlimmWoodlandetal.2018, author = {Benard, Antoine and Klimm, Kevin and Woodland, Alan B. and Arculus, Richard J. and Wilke, Max and Botcharnikov, Roman E. and Shimizu, Nobumichi and Nebel, Oliver and Rivard, Camille and Ionov, Dmitri A.}, title = {Oxidising agents in sub-arc mantle melts link slab devolatilisation and arc magmas}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-018-05804-2}, pages = {10}, year = {2018}, abstract = {Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO4) and dissolved SO42- in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe3+/Sigma Fe in spinel record a S6+-Fe2+ redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and delta S-34 (+ 7 to + 11\%), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas.}, language = {en} } @article{KutzschbachGuttmannMarquardtetal.2018, author = {Kutzschbach, Martin and Guttmann, Peter and Marquardt, K. and Werner, S. and Henzler, K. D. and Wilke, Max}, title = {A transmission x-ray microscopy and NEXAFS approach for studying corroded silicate glasses at the nanometre scale}, series = {European journal of glass science and technology / Deutsche Glastechnische Gesellschaft (DGG) and the Society of Glass Technology (SGT). B, Physics and chemistry of glasses}, volume = {59}, journal = {European journal of glass science and technology / Deutsche Glastechnische Gesellschaft (DGG) and the Society of Glass Technology (SGT). B, Physics and chemistry of glasses}, number = {1}, publisher = {Society of Glass Technology}, address = {Sheffield}, issn = {1753-3562}, doi = {10.13036/17533562.59.1.043}, pages = {11 -- 26}, year = {2018}, abstract = {In this study transmission X-ray microscopy (TXM) was tested as a method to investigate the chemistry and structure of corroded silicate glasses at the nanometer scale. Three different silicate glasses were altered in static corrosion experiments for 1-336 hours at temperatures between 60 degrees C and 85 degrees C using a 25\% HCl solution. Thin lamellas were cut perpendicular to the surface of corroded glass monoliths and were analysed with conventional TEM as well as with TXM. By recording optical density profiles at photon energies around the Na and O K-edges, the shape of the corrosion rim/pristine glass interfaces and the thickness of the corrosion rims has been determined. Na and O near-edge X-ray absorption fine-structure spectra (NEXAFS) were obtained without inducing irradiation damage and have been used to detect chemical changes in the corrosion rims. Spatially resolved NEXAFS spectra at the O K-edge provided insight to structural changes in the corrosion layer on the atomic scale. By comparison to O K-edge spectra of silicate minerals and (hydrous) albite glass as well as to O K-edge NEXAFS of model structures simulated with ab initio calculations, evidence is provided that changes of the fine structure at the O K-edge are assigned to the formation of siloxane groups in the corrosion rim.}, language = {en} } @article{DietrichBehrensWilke2018, author = {Dietrich, Marcel and Behrens, Harald and Wilke, Max}, title = {A new optical cell for in situ Raman spectroscopy, and its application to study sulfur-bearing fluids at elevated pressures and temperatures}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {103}, journal = {American mineralogist : an international journal of earth and planetary materials}, number = {3}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {0003-004X}, doi = {10.2138/am-2018-6244}, pages = {418 -- 429}, year = {2018}, abstract = {Sulfur is an important component in volcanic gases at the Earth surface but also present in the deep Earth in hydrothermal or magmatic fluids. Little is known about the evolution of such fluids during ascent in the crust. A new optical cell was developed for in situ Raman spectroscopic investigations on fluids allowing abrupt or continuous changes of pressure up to 200 MPa at temperatures up to 750 degrees C. The concept is based on a flexible gold bellow, which separates the sample fluid from the pressure medium water. To avoid reactions between aggressive fluids and the pressure cell, steel components in contact with the fluid are shielded by gold foil. The cell was tested to study redox reactions in fluids using aqueous ammonium sulfate solutions as a model system. During heating at constant pressure of 130 MPa, sulfate ions transform first to HSO4- ions and then to molecular units such as H2SO4. Variation of pressure shows that the stability of sulfate species relies on fluid density, i.e., highly charged species are stable only in high-density fluids. Partial decomposition of ammonium was evident above 550 degrees C by the occurrence of a nitrogen peak in the Raman spectra. Reduced sulfur species were observed above 700 degrees C by Raman signals near 2590 cm(-1) assigned to HS- and H2S. No clear evidence for the formation of sulfur dioxide was found in contrary to previous studies on aqueous H2SO4, suggesting very reducing conditions in our experiments. Fluid-mineral interaction was studied by inserting into the cell a small, semi-open capsule filled with a mixture of pyrite and pyrrhotite. Oxidation of the sample assembly was evident by transformation of pyrite to pyrrhotite. As a consequence, sulfide species were observed in the fluid already at temperatures of similar to 600 degrees C.}, language = {en} }