@article{ErbelloDoelessoMelnickZeilingeretal.2022, author = {Erbello Doelesso, Asfaw and Melnick, Daniel and Zeilinger, Gerold and Bookhagen, Bodo and Pingel, Heiko and Strecker, Manfred}, title = {Geomorphic expression of a tectonically active rift-transfer zone in southern Ethiopia}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {403}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier Science}, address = {Amsterdam [u.a.]}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2022.108162}, pages = {20}, year = {2022}, abstract = {The Gofa Province and the Chew Bahir Basin of southern Ethiopia constitute tectonically active regions, where the Southern Main Ethiopian Rift converges with the Northern Kenya Rift through a wide zone of extensional deformation with several north to northeast-trending, left-stepping en-e \& PRIME;chelon basins. This sector of the Southern Main Ethiopian Rift is characterized by a semi-arid climate and a largely uniform lithology, and thus provides ideal conditions for studying the different parameters that define the tectonic and geomorphic features of this complex kinematic transfer zone. In this study, the degree of tectonic activity, spatiotemporal variations in extension, and the nature of kinematic linkage between different fault systems of the transfer zone are constrained by detailed quantitative geomorphic analysis of river catchments and focused field work. We analyzed fluvial and landscape morphometric characteristics in combination with structural, seismicity, and climatic data to better evaluate the tectono-geomorphic history of this transfer zone. Our data reveal significant north-south variations in the degree of extension from the Sawula Basin in the north (mature) to the Chew Bahir Basin in the south (juvenile). First, normalized channel-steepness indices and the spatial arrangement of knickpoints in footwall-draining streams suggest a gradual, southward shift in extensional deformation and recent tectonic activity. Second, based on 1-k(m) radius local relief and mean-hillslope maximum values that are consistent with ksn anomalies, we confirm strain localization within zones of fault interaction. Third, morphometric indices such as hypsometry, basin asymmetry factor, and valley floor width to valley height ratio also indicate a north to south gradient in tectonic activity, highlighting the importance of such a wide transfer zone with diffuse extension linking different rift segments during the break-up of continental crust.}, language = {en} } @article{RiedlMelnickNjueetal.2022, author = {Riedl, Simon and Melnick, Daniel and Njue, Lucy and Sudo, Masafumi and Strecker, Manfred}, title = {Mid-Pleistocene to recent crustal extension in the inner graben of the Northern Kenya Rift}, series = {Geochemistry, geophysics, geosystems}, volume = {23}, journal = {Geochemistry, geophysics, geosystems}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2021GC010123}, pages = {25}, year = {2022}, abstract = {Magmatic continental rifts often constitute nascent plate boundaries, yet long-term extension rates and transient rate changes associated with these early stages of continental breakup remain difficult to determine. Here, we derive a time-averaged minimum extension rate for the inner graben of the Northern Kenya Rift (NKR) of the East African Rift System for the last 0.5 m.y. We use the TanDEM-X science digital elevation model to evaluate fault-scarp geometries and determine fault throws across the volcano-tectonic axis of the inner graben of the NKR. Along rift-perpendicular profiles, amounts of cumulative extension are determined, and by integrating four new Ar-40/Ar-39 radiometric dates for the Silali volcano into the existing geochronology of the faulted volcanic units, time-averaged extension rates are calculated. This study reveals that in the inner graben of the NKR, the long-term extension rate based on mid-Pleistocene to recent brittle deformation has minimum values of 1.0-1.6 mm yr(-1), locally with values up to 2.0 mm yr(-1). A comparison with the decadal, geodetically determined extension rate reveals that at least 65\% of the extension must be accommodated within a narrow, 20-km-wide zone of the inner rift. In light of virtually inactive border faults of the NKR, we show that extension is focused in the region of the active volcano-tectonic axis in the inner graben, thus highlighting the maturing of continental rifting in the NKR.}, language = {en} } @article{RodriguezPicedaScheckWenderothBottetal.2022, author = {Rodriguez Piceda, Constanza and Scheck-Wenderoth, Magdalena and Bott, Judith and Gomez Dacal, Maria Laura and Cacace, Mauro and Pons, Michael and Prezzi, Claudia and Strecker, Manfred}, title = {Controls of the Lithospheric Thermal Field of an Ocean-Continent Subduction Zone}, series = {Lithosphere / Geological Society of America}, volume = {2022}, journal = {Lithosphere / Geological Society of America}, number = {1}, publisher = {GeoScienceWorld}, address = {McLean}, issn = {1941-8264}, doi = {10.2113/2022/2237272}, pages = {26}, year = {2022}, abstract = {In an ocean-continent subduction zone, the assessment of the lithospheric thermal state is essential to determine the controls of the deformation within the upper plate and the dip angle of the subducting lithosphere. In this study, we evaluate the degree of influence of both the configuration of the upper plate (i.e., thickness and composition of the rock units) and variations of the subduction angle on the lithospheric thermal field of the southern Central Andes (29 degrees-39 degrees S). Here, the subduction angle increases from subhorizontal (5 degrees) north of 33 degrees S to steep (similar to 30 degrees) in the south. We derived the 3D temperature and heat flow distribution of the lithosphere in the southern Central Andes considering conversion of S wave tomography to temperatures together with steady-state conductive thermal modeling. We found that the orogen is overall warmer than the forearc and the foreland and that the lithosphere of the northern part of the foreland appears colder than its southern counterpart. Sedimentary blanketing and the thickness of the radiogenic crust exert the main control on the shallow thermal field (<50km depth). Specific conditions are present where the oceanic slab is relatively shallow (<85 km depth) and the radiogenic crust is thin. This configuration results in relatively colder temperatures compared to regions where the radiogenic crust is thick and the slab is steep. At depths >50km, the temperatures of the overriding plate are mainly controlled by the mantle heat input and the subduction angle. The thermal field of the upper plate likely preserves the flat subduction angle and influences the spatial distribution of shortening.}, language = {en} } @article{RodriguezPicedaScheckWenderothCacaceetal.2022, author = {Rodriguez Piceda, Constanza and Scheck-Wenderoth, Magdalena and Cacace, Mauro and Bott, Judith and Strecker, Manfred}, title = {Long-Term Lithospheric Strength and Upper-Plate Seismicity in the Southern Central Andes, 29 degrees-39 degrees S}, series = {Geochemistry, geophysics, geosystems}, volume = {23}, journal = {Geochemistry, geophysics, geosystems}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2021GC010171}, pages = {22}, year = {2022}, abstract = {We examined the relationship between the mechanical strength of the lithosphere and the distribution of seismicity within the overriding continental plate of the southern Central Andes (SCA, 29 degrees-39 degrees S), where the oceanic Nazca Plate changes its subduction angle between 33 degrees S and 35 degrees S, from subhorizontal in the north (<5 degrees) to steep in the south (similar to 30 degrees). We computed the long-term lithospheric strength based on an existing 3D model describing variations in thickness, density, and temperature of the main geological units forming the lithosphere of the SCA and adjacent forearc and foreland regions. The comparison between our results and seismicity within the overriding plate (upper-plate seismicity) shows that most of the events occur within the modeled brittle domain of the lithosphere. The depth where the deformation mode switches from brittle frictional to thermally activated ductile creep provides a conservative lower bound to the seismogenic zone in the overriding plate of the study area. We also found that the majority of upper-plate earthquakes occurs within the realm of first-order contrasts in integrated strength (12.7-13.3 log Pam in the Andean orogen vs. 13.5-13.9 log Pam in the forearc and the foreland). Specific conditions characterize the mechanically strong northern foreland of the Andes, where seismicity is likely explained by the effects of slab steepening.}, language = {en} } @article{JaraMunozMelnickLietal.2022, author = {Jara-Mu{\~n}oz, Julius and Melnick, Daniel and Li, Shaoyang and Socquet, Anne and Cort{\´e}s-Aranda, Joaqu{\´i}n and Brill, Dominik and Strecker, Manfred}, title = {The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-30754-1}, pages = {13}, year = {2022}, abstract = {The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 ± 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 ± 0.2 ka recurrence time for Mw~7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere.}, language = {en} } @misc{JaraMunozMelnickLietal.2022, author = {Jara-Mu{\~n}oz, Julius and Melnick, Daniel and Li, Shaoyang and Socquet, Anne and Cort{\´e}s-Aranda, Joaqu{\´i}n and Brill, Dominik and Strecker, Manfred}, title = {The cryptic seismic potential of the Pichilemu blind fault in Chile revealed by off-fault geomorphology}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1294}, issn = {1866-8372}, doi = {10.25932/publishup-57461}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574616}, pages = {13}, year = {2022}, abstract = {The first step towards assessing hazards in seismically active regions involves mapping capable faults and estimating their recurrence times. While the mapping of active faults is commonly based on distinct geologic and geomorphic features evident at the surface, mapping blind seismogenic faults is complicated by the absence of on-fault diagnostic features. Here we investigated the Pichilemu Fault in coastal Chile, unknown until it generated a Mw 7.0 earthquake in 2010. The lack of evident surface faulting suggests activity along a partly-hidden blind fault. We used off-fault deformed marine terraces to estimate a fault-slip rate of 0.52 ± 0.04 m/ka, which, when integrated with satellite geodesy suggests a 2.12 ± 0.2 ka recurrence time for Mw~7.0 normal-faulting earthquakes. We propose that extension in the Pichilemu region is associated with stress changes during megathrust earthquakes and accommodated by sporadic slip during upper-plate earthquakes, which has implications for assessing the seismic potential of cryptic faults along convergent margins and elsewhere.}, language = {en} } @article{FalkowskiEhlersMadellaetal.2021, author = {Falkowski, Sarah and Ehlers, Todd and Madella, Andrea and Glotzbach, Christoph and Georgieva, Viktoria and Strecker, Manfred}, title = {Glacial catchment erosion from detrital zircon (U-Th)/He thermochronology}, series = {GR / AGU, American Geophysical Union: Earth surface}, volume = {126}, journal = {GR / AGU, American Geophysical Union: Earth surface}, number = {10}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2169-9003}, doi = {10.1029/2021JF006141}, pages = {26}, year = {2021}, abstract = {Alpine glacial erosion exerts a first-order control on mountain topography and sediment production, but its mechanisms are poorly understood. Observational data capable of testing glacial erosion and transport laws in glacial models are mostly lacking. New insights, however, can be gained from detrital tracer thermochronology. Detrital tracer thermochronology works on the premise that thermochronometer bedrock ages vary systematically with elevation, and that detrital downstream samples can be used to infer the source elevation sectors of sediments. We analyze six new detrital samples of different grain sizes (sand and pebbles) from glacial deposits and the modern river channel integrated with data from 18 previously analyzed bedrock samples from an elevation transect in the Leones Valley, Northern Patagonian Icefield, Chile (46.7 degrees S). We present 622 new detrital zircon (U-Th)/He (ZHe) single-grain analyses and 22 new bedrock ZHe analyses for two of the bedrock samples to determine age reproducibility. Results suggest that glacial erosion was focused at and below the Last Glacial Maximum and neoglacial equilibrium line altitudes, supporting previous modeling studies. Furthermore, grain age distributions from different grain sizes (sand, pebbles) might indicate differences in erosion mechanisms, including mass movements at steep glacial valley walls. Finally, our results highlight complications and opportunities in assessing glacigenic environments, such as dynamics of sediment production, transport, transient storage, and final deposition, that arise from settings with large glacio-fluvial catchments.}, language = {en} } @article{FreislebenJaraMunozMelnicketal.2021, author = {Freisleben, Roland and Jara-Munoz, Julius and Melnick, Daniel and Miguel Martinez, Jose and Strecker, Manfred}, title = {Marine terraces of the last interglacial period along the Pacific coast of South America (1 degrees N-40 degrees S)}, series = {Earth system science data : ESSD}, volume = {13}, journal = {Earth system science data : ESSD}, number = {6}, publisher = {Copernics Publications}, address = {Katlenburg-Lindau}, issn = {1866-3508}, doi = {10.5194/essd-13-2487-2021}, pages = {2487 -- 2513}, year = {2021}, abstract = {Tectonically active coasts are dynamic environments characterized by the presence of multiple marine terraces formed by the combined effects of wave erosion, tectonic uplift, and sea-level oscillations at glacialcycle timescales. Well-preserved erosional terraces from the last interglacial sea-level highstand are ideal marker horizons for reconstructing past sea-level positions and calculating vertical displacement rates. We carried out an almost continuous mapping of the last interglacial marine terrace along similar to 5000 km of the western coast of South America between 1 degrees N and 40 degrees S. We used quantitatively replicable approaches constrained by published terrace-age estimates to ultimately compare elevations and patterns of uplifted terraces with tectonic and climatic parameters in order to evaluate the controlling mechanisms for the formation and preservation of marine terraces and crustal deformation. Uncertainties were estimated on the basis of measurement errors and the distance from referencing points. Overall, our results indicate a median elevation of 30.1 m, which would imply a median uplift rate of 0.22 m kyr(-1) averaged over the past similar to 125 kyr. The patterns of terrace elevation and uplift rate display high-amplitude (similar to 100-200 m) and long-wavelength (similar to 10(2) km) structures at the Manta Peninsula (Ecuador), the San Juan de Marcona area (central Peru), and the Arauco Peninsula (south-central Chile). Medium-wavelength structures occur at the Mejillones Peninsula and Topocalma in Chile, while short-wavelength (< 10 km) features are for instance located near Los Vilos, Valparaiso, and Carranza, Chile. We interpret the long-wavelength deformation to be controlled by deep-seated processes at the plate interface such as the subduction of major bathymetric anomalies like the Nazca and Carnegie ridges. In contrast, short-wavelength deformation may be primarily controlled by sources in the upper plate such as crustal faulting, which, however, may also be associated with the subduction of topographically less pronounced bathymetric anomalies. Latitudinal differences in climate additionally control the formation and preservation of marine terraces. Based on our synopsis we propose that increasing wave height and tidal range result in enhanced erosion and morphologically well-defined marine terraces in south-central Chile. Our study emphasizes the importance of using systematic measurements and uniform, quantitative methodologies to characterize and correctly interpret marine terraces at regional scales, especially if they are used to unravel the tectonic and climatic forcing mechanisms of their formation. This database is an integral part of the World Atlas of Last Interglacial Shorelines (WALIS), published online at https://doi.org/10.5281/zenodo.4309748 (Freisleben et al., 2020).}, language = {en} } @article{RichterBruneRiedletal.2021, author = {Richter, Maximilian and Brune, Sascha and Riedl, Simon and Glerum, Anne and Neuharth, Derek and Strecker, Manfred}, title = {Controls on asymmetric rift dynamics}, series = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, volume = {40}, journal = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2020TC006553}, pages = {21}, year = {2021}, abstract = {Complex, time-dependent, and asymmetric rift geometries are observed throughout the East African Rift System (EARS) and are well documented, for instance, in the Kenya Rift. To unravel asymmetric rifting processes in this region, we conduct 2D geodynamic models. We use the finite element software ASPECT employing visco-plastic rheologies, mesh-refinement, distributed random noise seeding, and a free surface. In contrast to many previous numerical modeling studies that aimed at understanding final rifted margin symmetry, we explicitly focus on initial rifting stages to assess geodynamic controls on strain localization and fault evolution. We thereby link to geological and geophysical observations from the Southern and Central Kenya Rift. Our models suggest a three-stage early rift evolution that dynamically bridges previously inferred fault-configuration phases of the eastern EARS branch: (1) accommodation of initial strain localization by a single border fault and flexure of the hanging-wall crust, (2) faulting in the hanging-wall and increasing upper-crustal faulting in the rift-basin center, and (3) loss of pronounced early stage asymmetry prior to basinward localization of deformation. This evolution may provide a template for understanding early extensional faulting in other branches of the East African Rift and in asymmetric rifts worldwide. By modifying the initial random noise distribution that approximates small-scale tectonic inheritance, we show that a spectrum of first-order fault configurations with variable symmetry can be produced in models with an otherwise identical setup. This approach sheds new light on along-strike rift variability controls in active asymmetric rifts and proximal rifted margins.}, language = {en} } @article{RillerGiambiagiStrecker2021, author = {Riller, Ulrich and Giambiagi, Laura and Strecker, Manfred}, title = {From proterozoic tectonics to quaternary climate variability}, series = {International journal of earth sciences}, volume = {110}, journal = {International journal of earth sciences}, number = {7}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {1437-3254}, doi = {10.1007/s00531-021-02095-9}, pages = {2269 -- 2271}, year = {2021}, language = {en} }