@misc{SchmidtFelisattiAsteretal.2021, author = {Schmidt, Hendrikje and Felisatti, Arianna and Aster, Michael von and Wilbert, J{\"u}rgen and Moers, Arpad von and Fischer, Martin H.}, title = {Neuromuscular Diseases Affect Number Representation and Processing}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52231}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522312}, pages = {15}, year = {2021}, abstract = {Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.}, language = {en} } @article{SchmidtFelisattiAsteretal.2021, author = {Schmidt, Hendrikje and Felisatti, Arianna and Aster, Michael von and Wilbert, J{\"u}rgen and Moers, Arpad von and Fischer, Martin H.}, title = {Neuromuscular diseases affect number representation and processing}, series = {Frontiers in psychology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in psychology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.697881}, pages = {13}, year = {2021}, abstract = {Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.}, language = {en} } @misc{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {Commentary}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {620}, issn = {1866-8364}, doi = {10.25932/publishup-46041}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-460413}, pages = {6}, year = {2020}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {Commentary}, series = {Frontiers in Human Neuroscience}, volume = {14}, journal = {Frontiers in Human Neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.00099}, pages = {4}, year = {2020}, language = {en} } @article{FelisattiLaubrockShakietal.2020, author = {Felisatti, Arianna and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {A biological foundation for spatial-numerical associations}, series = {Annals of the New York Academy of Sciences}, volume = {1477}, journal = {Annals of the New York Academy of Sciences}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0077-8923}, doi = {10.1111/nyas.14418}, pages = {44 -- 53}, year = {2020}, abstract = {"Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain.}, language = {en} } @article{SixtusLonnemannFischeretal.2019, author = {Sixtus, Elena and Lonnemann, Jan and Fischer, Martin H. and Werner, Karsten}, title = {Mental Number Representations in 2D Space}, series = {Frontiers in Psychology}, volume = {10}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.00172}, pages = {11}, year = {2019}, abstract = {There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where "more is up." Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space.}, language = {en} } @misc{SixtusLonnemannFischeretal.2019, author = {Sixtus, Elena and Lonnemann, Jan and Fischer, Martin H. and Werner, Karsten}, title = {Mental Number Representations in 2D Space}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {538}, issn = {1866-8364}, doi = {10.25932/publishup-42496}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424960}, year = {2019}, abstract = {There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where "more is up." Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space.}, language = {en} } @misc{WiemersBekkeringLindemann2017, author = {Wiemers, Michael and Bekkering, Harold and Lindemann, Oliver}, title = {Two attributes of number meaning}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {587}, issn = {1866-8364}, doi = {10.25932/publishup-43356}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-433566}, pages = {253 -- 261}, year = {2017}, abstract = {Many studies demonstrated interactions between number processing and either spatial codes (effects of spatial-numerical associations) or visual size-related codes (size-congruity effect). However, the interrelatedness of these two number couplings is still unclear. The present study examines the simultaneous occurrence of space- and size-numerical congruency effects and their interactions both within and across trials, in a magnitude judgment task physically small or large digits were presented left or right from screen center. The reaction times analysis revealed that space- and size-congruency effects coexisted in parallel and combined additively. Moreover, a selective sequential modulation of the two congruency effects was found. The size-congruency effect was reduced after size incongruent trials. The space-congruency effect, however, was only affected by the previous space congruency. The observed independence of spatial-numerical and within magnitude associations is interpreted as evidence that the two couplings reflect Different attributes of numerical meaning possibly related to orginality and cardinality.}, language = {en} } @article{WiemersBekkeringLindemann2017, author = {Wiemers, Michael and Bekkering, Harold and Lindemann, Oliver}, title = {Two attributes of number meaning}, series = {Experimental Psychology}, volume = {64}, journal = {Experimental Psychology}, number = {4}, publisher = {Hogrefe}, address = {G{\"o}ttingen}, issn = {1618-3169}, doi = {10.1027/1618-3169/a000366}, pages = {253 -- 261}, year = {2017}, abstract = {Many studies demonstrated interactions between number processing and either spatial codes (effects of spatial-numerical associations) or visual size-related codes (size-congruity effect). However, the interrelatedness of these two number couplings is still unclear. The present study examines the simultaneous occurrence of space- and size-numerical congruency effects and their interactions both within and across trials, in a magnitude judgment task physically small or large digits were presented left or right from screen center. The reaction times analysis revealed that space- and size-congruency effects coexisted in parallel and combined additively. Moreover, a selective sequential modulation of the two congruency effects was found. The size-congruency effect was reduced after size incongruent trials. The space-congruency effect, however, was only affected by the previous space congruency. The observed independence of spatial-numerical and within magnitude associations is interpreted as evidence that the two couplings reflect Different attributes of numerical meaning possibly related to orginality and cardinality.}, language = {en} }