@article{SaeterbakkenStienAndersenetal.2022, author = {Saeterbakken, Atle H. and Stien, Nicolay and Andersen, Vidar and Scott, Suzanne and Cumming, Kristoffer T. and Behm, David G. and Granacher, Urs and Prieske, Olaf}, title = {The effects of trunk muscle training on physical fitness and sport-specific performance in young and adult athletes}, series = {Sports medicine}, volume = {52}, journal = {Sports medicine}, number = {7}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-021-01637-0}, pages = {1599 -- 1622}, year = {2022}, abstract = {Background The role of trunk muscle training (TMT) for physical fitness (e.g., muscle power) and sport-specific performance measures (e.g., swimming time) in athletic populations has been extensively examined over the last decades. However, a recent systematic review and meta-analysis on the effects of TMT on measures of physical fitness and sport-specific performance in young and adult athletes is lacking. Objective To aggregate the effects of TMT on measures of physical fitness and sport-specific performance in young and adult athletes and identify potential subject-related moderator variables (e.g., age, sex, expertise level) and training-related programming parameters (e.g., frequency, study length, session duration, and number of training sessions) for TMT effects. Data Sources A systematic literature search was conducted with PubMed, Web of Science, and SPORTDiscus, with no date restrictions, up to June 2021. Study Eligibility Criteria Only controlled trials with baseline and follow-up measures were included if they examined the effects of TMT on at least one measure of physical fitness (e.g., maximal muscle strength, change-of-direction speed (CODS)/agility, linear sprint speed) and sport-specific performance (e.g., throwing velocity, swimming time) in young or adult competitive athletes at a regional, national, or international level. The expertise level was classified as either elite (competing at national and/or international level) or regional (i.e., recreational and sub-elite). Study Appraisal and Synthesis Methods The methodological quality of TMT studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. A random-effects model was used to calculate weighted standardized mean differences (SMDs) between intervention and active control groups. Additionally, univariate sub-group analyses were independently computed for subject-related moderator variables and training-related programming parameters. Results Overall, 31 studies with 693 participants aged 11-37 years were eligible for inclusion. The methodological quality of the included studies was 5 on the PEDro scale. In terms of physical fitness, there were significant, small-to-large effects of TMT on maximal muscle strength (SMD = 0.39), local muscular endurance (SMD = 1.29), lower limb muscle power (SMD = 0.30), linear sprint speed (SMD = 0.66), and CODS/agility (SMD = 0.70). Furthermore, a significant and moderate TMT effect was found for sport-specific performance (SMD = 0.64). Univariate sub-group analyses for subject-related moderator variables revealed significant effects of age on CODS/agility (p = 0.04), with significantly large effects for children (SMD = 1.53, p = 0.002). Further, there was a significant effect of number of training sessions on muscle power and linear sprint speed (p <= 0.03), with significant, small-to-large effects of TMT for > 18 sessions compared to <= 18 sessions (0.45 <= SMD <= 0.84, p <= 0.003). Additionally, session duration significantly modulated TMT effects on linear sprint speed, CODS/agility, and sport-specific performance (p <= 0.05). TMT with session durations <= 30 min resulted in significant, large effects on linear sprint speed and CODS/agility (1.66 <= SMD <= 2.42, p <= 0.002), whereas session durations > 30 min resulted in significant, large effects on sport-specific performance (SMD = 1.22, p = 0.008). Conclusions Our findings indicate that TMT is an effective means to improve selected measures of physical fitness and sport-specific performance in young and adult athletes.
Independent sub-group analyses suggest that TMT has the potential to improve CODS/agility, but only in children. Additionally, more (> 18) and/or shorter duration (<= 30 min) TMT sessions appear to be more effective for improving lower limb muscle power, linear sprint speed, and CODS/agility in young or adult competitive athletes.}, language = {en} } @article{KhudairMarcuzziNgetal.2022, author = {Khudair, Mohammed and Marcuzzi, Anna and Ng, Kwok and Tempest, Gavin Daniel and Bartoš, František and Peric, Ratko and Maier, Maximilian and Beccia, Flavia and Boccia, Stefania and Brandes, Mirko and Cardon, Greet and Carlin, Angela and Castagna, Carolina and Chaabene, Helmi and Chalkley, Anna and Ciaccioni, Simone and Cieślińska-Świder, Joanna and Čingienė, Vilma and Cortis, Cristina and Corvino, Chiara and de Geus, Eco J. C. and Di Baldassarre, Angela and Di Credico, Andrea and Drid, Patrik and Tarazaga, Rosa Ma Fern{\´a}ndez and Gall{\`e}, Francesca and S{\´a}nchez, Esther Garcia and Gebremariam, Mekdes and Ghinassi, Barbara and Goudas, Marios and Hayes, Grainne and Honorio, Samuel and Izzicupo, Pascal and Jahre, Henriette and Jelsma, Judith and Juric, Petra and Kolovelonis, Athanasios and Kongsvold, Atle and Kouidi, Evangelia and Mansergh, Fiona and Masanovic, Bojan and Mekonnen, Teferi and Mork, Paul Jarle and Murphy, Marie and O'Hara, Kelly and Torun, Ayse Ozbil and Palumbo, Federico and Popovic, Stevo and Prieske, Olaf and Puharic, Zrinka and Ribeiro, Jos{\´e} Carlos and Rumbold, Penny Louise Sheena and Sandu, Petru and Soric, Maroje and Stavnsbo, Mette and Syrmpas, Ioannis and van der Ploeg, Hidde P. and Van Hoye, Aur{\´e}lie and Vilela, Sofia and Woods, Catherine and Wunsch, Kathrin and Caprinica, Laura and MacDonncha, Ciaran and Ling, Fiona Chun Man}, title = {DE-PASS Best Evidence Statement (BESt): modifiable determinants of physical activity and sedentary behaviour in children and adolescents aged 5-19 years-a protocol for systematic review and meta-analysis}, series = {BMJ open}, volume = {12}, journal = {BMJ open}, number = {9}, publisher = {BMJ Publishing Group}, address = {London}, organization = {DE-PASS}, issn = {2044-6055}, doi = {10.1136/bmjopen-2021-059202}, pages = {8}, year = {2022}, abstract = {Introduction Physical activity among children and adolescents remains insufficient, despite the substantial efforts made by researchers and policymakers. Identifying and furthering our understanding of potential modifiable determinants of physical activity behaviour (PAB) and sedentary behaviour (SB) is crucial for the development of interventions that promote a shift from SB to PAB. The current protocol details the process through which a series of systematic literature reviews and meta-analyses (MAs) will be conducted to produce a best-evidence statement (BESt) and inform policymakers. The overall aim is to identify modifiable determinants that are associated with changes in PAB and SB in children and adolescents (aged 5-19 years) and to quantify their effect on, or association with, PAB/SB. Methods and analysis A search will be performed in MEDLINE, SportDiscus, Web of Science, PsychINFO and Cochrane Central Register of Controlled Trials. Randomised controlled trials (RCTs) and controlled trials (CTs) that investigate the effect of interventions on PAB/SB and longitudinal studies that investigate the associations between modifiable determinants and PAB/SB at multiple time points will be sought. Risk of bias assessments will be performed using adapted versions of Cochrane's RoB V.2.0 and ROBINS-I tools for RCTs and CTs, respectively, and an adapted version of the National Institute of Health's tool for longitudinal studies. Data will be synthesised narratively and, where possible, MAs will be performed using frequentist and Bayesian statistics. Modifiable determinants will be discussed considering the settings in which they were investigated and the PAB/SB measurement methods used. Ethics and dissemination No ethical approval is needed as no primary data will be collected. The findings will be disseminated in peer-reviewed publications and academic conferences where possible. The BESt will also be shared with policy makers within the DE-PASS consortium in the first instance. Systematic review registration CRD42021282874.}, language = {en} } @article{BehrensGubeChaabeneetal.2022, author = {Behrens, Martin and Gube, Martin and Chaabene, Helmi and Prieske, Olaf and Zenon, Alexandre and Broscheid, Kim-Charline and Schega, Lutz and Husmann, Florian and Weippert, Matthias}, title = {Fatigue and human performance}, series = {Sports medicine : an international journal of applied medicine and science in sport and exercise}, volume = {53}, journal = {Sports medicine : an international journal of applied medicine and science in sport and exercise}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {0112-1642}, doi = {10.1007/s40279-022-01748-2}, pages = {7 -- 31}, year = {2022}, abstract = {Fatigue has been defined differently in the literature depending on the field of research. The inconsistent use of the term fatigue complicated scientific communication, thereby limiting progress towards a more in-depth understanding of the phenomenon. Therefore, Enoka and Duchateau (Med Sci Sports Exerc 48:2228-38, 2016, [3]) proposed a fatigue framework that distinguishes between trait fatigue (i.e., fatigue experienced by an individual over a longer period of time) and motor or cognitive task-induced state fatigue (i.e., self-reported disabling symptom derived from the two interdependent attributes performance fatigability and perceived fatigability). Thereby, performance fatigability describes a decrease in an objective performance measure, while perceived fatigability refers to the sensations that regulate the integrity of the performer. Although this framework served as a good starting point to unravel the psychophysiology of fatigue, several important aspects were not included and the interdependence of the mechanisms driving performance fatigability and perceived fatigability were not comprehensively discussed. Therefore, the present narrative review aimed to (1) update the fatigue framework suggested by Enoka and Duchateau (Med Sci Sports Exerc 48:2228-38, 2016, [3]) pertaining the taxonomy (i.e., cognitive performance fatigue and perceived cognitive fatigue were added) and important determinants that were not considered previously (e.g., effort perception, affective valence, self-regulation), (2) discuss the mechanisms underlying performance fatigue and perceived fatigue in response to motor and cognitive tasks as well as their interdependence, and (3) provide recommendations for future research on these interactions. We propose to define motor or cognitive task-induced state fatigue as a psychophysiological condition characterized by a decrease in motor or cognitive performance (i.e., motor or cognitive performance fatigue, respectively) and/or an increased perception of fatigue (i.e., perceived motor or cognitive fatigue). These dimensions are interdependent, hinge on different determinants, and depend on body homeostasis (e.g., wakefulness, core temperature) as well as several modulating factors (e.g., age, sex, diseases, characteristics of the motor or cognitive task). Consequently, there is no single factor primarily determining performance fatigue and perceived fatigue in response to motor or cognitive tasks. Instead, the relative weight of each determinant and their interaction are modulated by several factors.}, language = {en} } @article{SaalChaabeneHelmetal.2022, author = {Saal, Christian and Chaabene, Helmi and Helm, Norman and Warnke, Torsten and Prieske, Olaf}, title = {Network analysis of associations between anthropometry, physical fitness, and sport-specific performance in young canoe sprint athletes}, series = {Frontiers in sports and active living}, volume = {4}, journal = {Frontiers in sports and active living}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2624-9367}, doi = {10.3389/fspor.2022.1038350}, pages = {13}, year = {2022}, abstract = {Introduction Anthropometric and physical fitness data can predict sport-specific performance (e.g., canoe sprint race time) in young athletes. Of note, inter-item correlations (i.e., multicollinearity) may exist between tests assessing similar physical qualities. However, multicollinearity among tests may change across age and/or sex due to age-/sex-specific non-linear development of test performances. Therefore, the present study aimed at analyzing inter-item correlations between anthropometric, physical fitness, and sport-specific performance data as a function of age and sex in young canoe sprint athletes. Methods Anthropometric, physical fitness, and sport-specific performance data of 618 male and 297 female young canoe sprint athletes (discipline: male/female kayak, male canoe) were recorded during a national talent identification program between 1992 and 2019. For each discipline, a correlation matrix (i.e., network analysis) was calculated for age category (U13, U14, U15, U16) and sex including anthropometrics (e.g., standing body height, body mass), physical fitness (e.g., cardiorespiratory endurance, muscle power), and sport-specific performance (i.e., 250 and 2,000-m on-water canoe sprint time). Network plots were used to explore the correlation patterns by visual inspection. Further, trimmed means (mu(trimmed)) of inter-item Pearson's correlations coefficients were calculated for each discipline, age category, and sex. Effects of age and sex were analyzed using one-way ANOVAs. Results Visual inspection revealed consistent associations among anthropometric measures across age categories, irrespective of sex. Further, associations between physical fitness and sport-specific performance were lower with increasing age, particularly in males. In this sense, statistically significant differences for mu(trimmed) were observed in male canoeists (p < 0.01, xi = 0.36) and male kayakers (p < 0.01, xi = 0.38) with lower mu(trimmed) in older compared with younger athletes (i.e., >= U15). For female kayakers, no statistically significant effect of age on mu(trimmed) was observed (p = 0.34, xi = 0.14). Discussion Our study revealed that inter-item correlation patterns (i.e., multicollinearity) of anthropometric, physical fitness, and sport-specific performance measures were lower in older (U15, U16) versus younger (U13, U14) male canoe sprint athletes but not in females. Thus, age and sex should be considered to identify predictors for sport-specific performance and design effective testing batteries for talent identification programs in canoe sprint athletes.}, language = {en} } @article{PrieskeChaabeneKullmannetal.2022, author = {Prieske, Olaf and Chaabene, Helmi and Kullmann, Niclas and Granacher, Urs}, title = {Effects of Individualized Versus Traditional Power Training on Strength, Power, Jump Performances, and Body Composition in Young Male Nordic Athletes}, series = {International journal of sports physiology and performance}, volume = {17}, journal = {International journal of sports physiology and performance}, number = {4}, publisher = {Human Kinetics Publ.}, address = {Champaign}, issn = {1555-0265}, doi = {10.1123/ijspp.2021-0074}, pages = {541 -- 548}, year = {2022}, abstract = {Purpose: This study aimed to examine the effects of individualized-load power training (IPT) versus traditional moderate-load power training (TPT) on strength, power, jump performance, and body composition in elite young Nordic athletes. Methods: In a randomized crossover design, 10 young male athletes (ski jumpers, Nordic combined athletes) age 17.5 (0.6) years (biological maturity status: +3.5 y postpeak height velocity) who competed on a national or international level performed 5 weeks of IPT (4 x 5 repetitions at 49\%-72\% 1-repetiton maximum [RM]) and TPT (5 x 5 repetitions at 50\%-60\% 1-RM) in addition to their regular training. Testing before, between, and after both training blocks comprised the assessment of muscle strength (loaded back squat 3-RM), power (maximal loaded back squat power), jump performance (eg, drop-jump height, reactive strength index), and body composition (eg, skeletal muscle mass). Results: Significant, large-size main effects for time were found for muscle strength (P < .01; g = 2.7), reactive strength index (P = .03; g= 1.6), and drop jump height (P = .02; g= 1.9) irrespective of the training condition (IPT, TPT). No significant time-by-condition interactions were observed. For measures of body composition, no significant main effects of condition and time or time-by-condition interactions were found. Conclusions: Our findings demonstrate that short-term IPT and TPT at moderate loads in addition to regular training were equally effective in improving measures of muscle strength (loaded back squat 3-RM) and vertical jump performance (reactive strength index, drop jump, and height) in young Nordic athletes.}, language = {en} } @article{PrieskeChaabeneMoranetal.2022, author = {Prieske, Olaf and Chaabene, Helmi and Moran, Jason and Saeterbakken, Atle Hole}, title = {Adaptations to Advanced Resistance Training Strategies in Youth and Adult Athletes}, series = {Frontiers in physiology / Frontiers Research Foundation}, volume = {13}, journal = {Frontiers in physiology / Frontiers Research Foundation}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.888118}, pages = {3}, year = {2022}, language = {en} } @article{ELAshkerChaabenePrieske2022, author = {EL-Ashker, Said and Chaabene, Helmi and Prieske, Olaf}, title = {Maximal isokinetic elbow and knee flexor-extensor strength measures in combat sports athletes: the role of movement velocity and limb side}, series = {BMC Sports Science, Medicine and Rehabilitation}, volume = {13}, journal = {BMC Sports Science, Medicine and Rehabilitation}, publisher = {Springer Nature}, address = {London}, issn = {1758-2555}, doi = {10.1186/s13102-022-00432-2}, pages = {10}, year = {2022}, abstract = {Background Maximal isokinetic strength ratios of joint flexors and extensors are important parameters to indicate the level of muscular balance at the joint. Further, in combat sports athletes, upper and lower limb muscle strength is affected by the type of sport. Thus, this study aimed to examine the differences in maximal isokinetic strength of the flexors and extensors and the corresponding flexor-extensor strength ratios of the elbows and knees in combat sports athletes. Method Forty male participants (age = 22.3 ± 2.5 years) from four different combat sports (amateur boxing, taekwondo, karate, and judo; n = 10 per sport) were tested for eccentric peak torque of the elbow/knee flexors (EF/KF) and concentric peak torque of the elbow/knee extensors (EE/KE) at three different angular velocities (60, 120, and 180°/s) on the dominant and non-dominant side using an isokinetic device. Results Analyses revealed significant, large-sized group × velocity × limb interactions for EF, EE, and EF-EE ratio, KF, KE, and KF-KE ratio (p ≤ 0.03; 0.91 ≤ d ≤ 1.75). Post-hoc analyses indicated that amateur boxers displayed the largest EE strength values on the non-dominant side at ≤ 120°/s and the dominant side at ≥ 120°/s (p < 0.03; 1.21 ≤ d ≤ 1.59). The largest EF-EE strength ratios were observed on amateur boxers' and judokas' non-dominant side at ≥ 120°/s (p < 0.04; 1.36 ≤ d ≤ 2.44). Further, we found lower KF-KE strength measures in karate (p < 0.04; 1.12 ≤ d ≤ 6.22) and judo athletes (p ≤ 0.03; 1.60 ≤ d ≤ 5.31) particularly on the non-dominant side. Conclusions The present findings indicated combat sport-specific differences in maximal isokinetic strength measures of EF, EE, KF, and KE particularly in favor of amateur boxers on the non-dominant side.}, language = {en} } @article{PrieskeDalagerLooksetal.2021, author = {Prieske, Olaf and Dalager, Tina and Looks, Vanessa and Golle, Kathleen and Granacher, Urs}, title = {Physical fitness and psycho-cognitive performance in the young and middle-aged workforce with primarily physical versus mental work demands}, series = {Journal of public health : from theory to practice : official organ of the Deutscher Verband f{\"u}r Gesundheitswissenschaften Public Health e.V. (DVGPH)}, volume = {29}, journal = {Journal of public health : from theory to practice : official organ of the Deutscher Verband f{\"u}r Gesundheitswissenschaften Public Health e.V. (DVGPH)}, number = {1}, publisher = {Springer}, address = {Berlin ; Heidelberg}, issn = {2198-1833}, doi = {10.1007/s10389-019-01099-9}, pages = {75 -- 84}, year = {2021}, abstract = {Aim The purpose of this study was to examine physical fitness and psycho-cognitive performance and their associations in young and middle-aged workers with primarily physical versus mental work demands. Subjects and methods Healthy young and middle-aged workers (73 men, age = 33 +/- 7 years; 75 women, age = 35 +/- 9 years) were recruited from German small-to-medium-sized enterprises (< 250 employees) and classified into groups with primarily mental (MD) or physical demands (PD) at work. Participants were tested for cardiorespiratory fitness, trunk flexor/extensor muscular endurance, handgrip strength, balance, leg muscle power, perceived stress, cognitive performance, and work ability. Results Ninety-four workers were allocated to the MD (53\% females) and 54 to the PD (46\% females) groups. The MD group showed significantly better balance, trunk extensor muscular endurance, and cognitive performance (p < 0.035, 0.35 <= d <= 0.55) and less stress compared with the PD group (p < 0.023, d = 0.38). Group-specific Spearman rank correlation analysis (r(S)) revealed significant small-to-medium-sized correlations between physical fitness and cognitive performance (- 0.205 <= r(S) <= 0.434) in the MD and PD groups. Significant small-to-medium-sized correlations were found for physical fitness and stress/work ability (0.211 <= r(S) <= 0.301) in the MD group only. Further, associations of trunk extensor muscular endurance and work ability were significantly higher in the MD group (r(S) = 0.240) compared with the PD group (r(S) = - 0.141; z = 2.16, p = 0.031). Conclusions MD workers showed better physical fitness measures (balance, trunk extensor muscular endurance) and cognitive performance and lower levels of perceived stress compared with PD workers. Small-to-medium-sized associations between physical fitness and psycho-cognitive performance measures indicate that gains in physical fitness may at least partly contribute to psycho-cognitive performance and/or vice versa, particularly in MD workers.}, language = {en} } @article{ChaabeneNegraMoranetal.2021, author = {Chaabene, Helmi and Negra, Yassine and Moran, Jason and Prieske, Olaf and Sammoud, Senda and Ramirez-Campillo, Rodrigo and Granacher, Urs}, title = {Plyometric training improves not only measures of linear speed, power, and change-of-direction speed but also repeated sprint ability in young female handball players}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {35}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {8}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000003128}, pages = {2230 -- 2235}, year = {2021}, abstract = {This study examined the effects of an 8-week plyometric training (PT) program on components of physical fitness in young female handball players. Twenty-one female adolescent handball players were assigned to an experimental group (EG, n = 12; age = 15.9 +/- 0.2 years) or an active control group (CG, n = 9, age = 15.9 +/- 0.3 years). While EG performed plyometric exercises in replacement of some handball-specific drills, CG maintained the regular training schedule. Baseline and follow-up tests were performed for the assessment of linear speed (i.e., 5-, 10-, and 20-m time), change-of-direction (CoD) speed (i.e., T-test time), muscle power (i.e., countermovement jump [CMJ] height and reactive strength index [RSI]), and repeated sprint ability (RSA) (RSA total time [RSA(total)], RSA best time [RSA(best)], and RSA fatigue index [RSA(FI)]). Data were analyzed using magnitude-based inferences. Within-group analyses for the EG revealed moderate-to-large improvements for the 5-m (effect size [ES] = 0.81 [0.1-1.5]), 10-m sprint time (ES = 0.84 [0.1-1.5]), RSI (ES = 0.75 [0.1-1.4]), RSA(FI) (ES = 0.65 [0.0-1.3]), and T-test time (ES = 1.46 [0.7-2.2]). Trivial-to-small ES was observed for RSA(best) (ES = 0.18 [-0.5 to 0.9]), RSA(total) (ES = 0.45 [-0.2 to 1.1]), 20-m sprint time (ES = 0.56 [-0.1 to 1.2]), and CMJ height (ES = 0.57 [-0.1 to 1.3]). For the CG, within-group analyses showed a moderate performance decline for T-test time (ES = -0.71 [-1.5 to 0.1]), small decreases for 5-m sprint time (ES = -0.46 [-1.2 to 0.3]), and a trivial decline for 10-m (ES = -0.10 [-0.9 to 0.7]) and 20-m sprint times (ES = -0.16 [-0.9 to 0.6]), RSA(total) (ES = 0.0 [-0.8 to 0.8]), and RSA(best) (ES = -0.20 [-0.9 to 0.6]). The control group achieved trivial-to-small improvements for CMJ height (ES = 0.10 [-0.68 to 0.87]) and RSI (ES = 0.30 [-0.5 to 1.1]). In conclusion, a short-term in-season PT program, in replacement of handball-specific drills, is effective in improving measures of physical fitness (i.e., linear/CoD speed, jumping, and RSA) in young female handball players.}, language = {en} } @article{LesinskiPrieskeChaabeneetal.2021, author = {Lesinski, Melanie and Prieske, Olaf and Chaabene, Helmi and Granacher, Urs}, title = {Seasonal effects of strength endurance vs. power training in young female soccer athletes}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {35}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {Supplement 12}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000003564}, pages = {S90 -- S96}, year = {2021}, abstract = {Lesinski, M, Prieske, O, Chaabene, H, and Granacher, U. Seasonal effects of strength endurance vs. power training in young female soccer athletes. J Strength Cond Res 35(12S): S90-S96, 2021-This study examined the seasonal effects of strength endurance training (SET) vs. power training (PT) on physical fitness and body composition in young female soccer players. Thirty-six young female elite soccer players (15 +/- 1 years; maturity offset +3 +/- 1 years) were allocated to progressive SET (n = 19) or PT (n = 17). Over the course of one soccer season, SET performed slow movement velocity, moderate intensity (50-60\% of the 1 repetition maximum [1RM]; 20-40 repetitions) strength exercises while PT performed moderate-to-high intensity (50-95\% of the 1RM; 3-8 repetitions), high movement velocity strength exercises (2 sessions center dot wk(-1)). Before and after training, tests were performed for the assessment of muscle strength (1RM leg press), jump performance (countermovement jump [CMJ], drop jump [DJ]), muscular endurance (ventral Bourban test), linear speed (10 m, 20 m), change-of-direction (CoD) speed (T-test), dynamic balance (Y-balance test), sport-specific performance (kicking velocity), and body composition (lean body mass and fat mass). An analysis of covariance was used to test for between-group differences at post-test with baseline values as covariate. No significant between-group differences were observed in terms of total training volume over the respective soccer seasons (p = 0.069; d = 0.68). At post-test, SET showed significantly better ventral Bourban and T-test performances (d = 1.28-2.28; p = 0.000-0.001) compared with PT. However, PT resulted in significantly better 1RM leg press, DJ, 10-m, and 20-m sprint performances (d = 0.85-1.44; p = 0.000-0.026). No significant between-group differences were observed at post-test for CMJ, Y-balance test, kicking performance, and body composition (d = 0.20-0.74, p = 0.051-0.594). Our findings are mainly in accordance with the principle of training specificity. Both SET and PT are recommended to be implemented in young female elite soccer players according to the respective training period.}, language = {en} }