@article{BallatoBruneStrecker2019, author = {Ballato, Paolo and Brune, Sascha and Strecker, Manfred}, title = {Sedimentary loading-unloading cycles and faulting in intermontane basins}, series = {Earth \& planetary science letters}, volume = {506}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.10.043}, pages = {388 -- 396}, year = {2019}, abstract = {The removal, redistribution, and transient storage of sediments in tectonically active mountain belts is thought to exert a first-order control on shallow crustal stresses, fault activity, and hence on the spatiotemporal pattern of regional deformation processes. Accordingly, sediment loading and unloading cycles in intermontane sedimentary basins may inhibit or promote intrabasinal faulting, respectively, but unambiguous evidence for this potential link has been elusive so far. Here we combine 2D numerical experiments that simulate contractional deformation in a broken-foreland setting (i.e., a foreland where shortening is diachronously absorbed by spatially disparate, reverse faults uplifting basement blocks) with field data from intermontane basins in the NW Argentine Andes. Our modeling results suggest that thicker sedimentary fills (>0.7-1.0 km) may suppress basinal faulting processes, while thinner fills (<0.7 km) tend to delay faulting. Conversely, the removal of sedimentary loads via fluvial incision and basin excavation promotes renewed intrabasinal faulting. These results help to better understand the tectono-sedimentary history of intermontane basins that straddle the eastern border of the Andean Plateau in northwestern Argentina. For example, the Santa Maria and the Humahuaca basins record intrabasinal deformation during or after sediment unloading, while the Quebrada del Toro Basin reflects the suppression of intrabasinal faulting due to loading by coarse conglomerates. We conclude that sedimentary loading and unloading cycles may exert a fundamental control on spatiotemporal deformation patterns in intermontane basins of tectonically active broken forelands. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{BallatoParraSchildgenetal.2018, author = {Ballato, Paolo and Parra, Mauricio and Schildgen, Taylor F. and Dunkl, I. and Yildirim, C. and {\"O}zsayin, Erman and Sobel, Edward and Echtler, H. and Strecker, Manfred}, title = {Multiple exhumation phases in the Central Pontides (N Turkey)}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2017TC004808}, pages = {1831 -- 1857}, year = {2018}, abstract = {The Central Pontides of N Turkey represents a mobile orogenic belt of the southern Eurasian margin that experienced several phases of exhumation associated with the consumption of different branches of the Neo-Tethys Ocean and the amalgamation of continental domains. Our new low-temperature thermochronology data help to constrain the timing of these episodes, providing new insights into associated geodynamic processes. In particular, our data suggest that exhumation occurred at (1) similar to 110 to 90Ma, most likely during tectonic accretion and exhumation of metamorphic rocks from the subduction zone; (2) from similar to 60 to 40Ma, during the collision of the Kirehir and Anatolide-Tauride microcontinental domains with the Eurasian margin; (3) from similar to 0 to 25Ma, either during the early stages of the Arabia-Eurasia collision (soft collision) when the Arabian passive margin reached the trench, implying 70 to 530km of subduction of the Arabian passive margin, or during a phase of trench advance predating hard collision at similar to 20Ma; and (4) similar to 11Ma to the present, during transpression associated with the westward motion of Anatolia. Our findings document the punctuated nature of fault-related exhumation, with episodes of fast cooling followed by periods of slow cooling or subsidence, the role of inverted normal faults in controlling the Paleogene exhumation pattern, and of the North Anatolian Fault in dictating the most recent pattern of exhumation.}, language = {en} } @article{BallatoCifelliHeidarzadehetal.2017, author = {Ballato, Paolo and Cifelli, Francesca and Heidarzadeh, Ghasem and Ghassemi, Mohammad R. and Wickert, Andrew D. and Hassanzadeh, Jamshid and Dupont-Nivet, Guillaume and Balling, Philipp and Sudo, Masafumi and Zeilinger, Gerold and Schmitt, Axel K. and Mattei, Massimo and Strecker, Manfred}, title = {Tectono-sedimentary evolution of the northern Iranian Plateau: insights from middle-late Miocene foreland-basin deposits}, series = {Basin research}, volume = {29}, journal = {Basin research}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12180}, pages = {417 -- 446}, year = {2017}, abstract = {Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia-Eurasia collision zone offer the unique possibility to study middle-late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long-term evolution of the Iranian Plateau, including the regional spatio-temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle-late Miocene crustal shortening and thickening processes led to the growth of a basement-cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland-basin (Great Pari Basin) to the east between 16.5 and 10.7Ma. By 10.7Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement-cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle-flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.}, language = {en} } @article{HeidarzadehBallatoHassanzadehetal.2017, author = {Heidarzadeh, Ghasem and Ballato, Paolo and Hassanzadeh, Jamshid and Ghassemi, Mohammad R. and Strecker, Manfred}, title = {Lake overspill and onset of fluvial incision in the Iranian Plateau: Insights from the Mianeh Basin}, series = {Earth \& planetary science letters}, volume = {469}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.04.019}, pages = {135 -- 147}, year = {2017}, abstract = {Orogenic plateaus represent a prime example of the interplay between surface processes, climate, and tectonics. This kind of an interplay is thought to be responsible for the formation, preservation, and, ultimately, the destruction of a typical elevated, low-internal relief plateau landscape. Here, we document the timing of intermontane basin filling associated with the formation of a low-relief plateau morphology, followed by basin opening and plateau-flank incision in the northwestern Iranian Plateau of the Arabia Eurasia collision zone. Our new U-Pb zircon ages from intercalated volcanic ashes in exposed plateau basin-fill sediments from the most external plateau basin (Mianeh Basin) document that the basin was internally drained at least between similar to 7 and 4 Ma, and that from similar to 5 to 4 Ma it was characterized by an similar to 2-km-high and similar to 0.5-km-deep lake (Mianeh paleolake), most likely as a result of wetter climatic conditions. At the same time, the eastern margin of the Mianeh Basin (and, therefore, of the Iranian Plateau) experienced limited tectonic activity, as documented by onlapping sediments and smoothed topography. The combination of high lake level and subdued topography at the plateau margin led to lake overspill, which resulted in the cutting of an similar to 1-km-deep bedrock gorge (Amardos) by the Qezel-Owzan River (QOR) beginning at similar to 4 Ma. This was associated with the incision of the plateau landscape and the establishment of fluvial connectivity with the Caspian Sea. Overall, our study emphasizes the interplay between surface and tectonic processes in forming, maintaining, and destroying orogenic plateau morphology, the transitional nature of orogenic plateau landscapes on timescales of 10(6) yr, and, finally, the role played by overspilling in integrating endorheic basins. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{DonnerGhodsKrueeretal.2015, author = {Donner, Stefanie and Ghods, Abdolreza and Kr{\"u}er, Frank and R{\"o}ßler, Dirk and Landgraf, Angela and Ballato, Paolo}, title = {The Ahar-Varzeghan Earthquake Doublet (M-w 6.4 and 6.2) of 11 August 2012: Regional Seismic Moment Tensors}, series = {Bulletin of the Seismological Society of America}, volume = {105}, journal = {Bulletin of the Seismological Society of America}, number = {2A}, publisher = {Seismological Society of America}, address = {Albany}, issn = {0037-1106}, doi = {10.1785/0120140042}, pages = {791 -- 807}, year = {2015}, abstract = {On 11 August 2012 an earthquake doublet (M-w 6.4 and 6.2) occurred near the city of Ahar, northwest Iran. Both events were only 6 km and 11 minutes apart, producing a surface rupture of about 12 km in length. Historical and modern seismicity has so far been sparse in this area. Spatially, the region represents a transitional zone between different tectonic domains, including compression in Iran, westward extrusion of the Anatolian plate, and thrusting beneath the Caucasus. In this study, we inverted the surface waveforms of the two mainshocks and 11 aftershocks (M-w >= 4.3) to obtain regional seismic moment tensors. The earthquakes analyzed can be grouped into pure strike slip (including the first mainshock) and oblique reverse mechanisms (including the second mainshock). The sequence provides information about faulting mechanisms at the spatial scale of the entire rock volume affected by the earthquake doublet, including coinciding deformation on minor faults (sub) parallel to the main fault and Riedel shears. It occurred on a so far unknown fault structure, which we call the Ahar fault. Alongside the seismological data, we used geological maps, satellite images, and digital elevation data to analyze the geomorphology of the region. Our analysis suggests that the adjacent North Tabriz fault, which accomodates up to 7 mm/yr of right-lateral strike-slip faulting, does not compensate the entire lateral shear strain, and that part of it is compensated farther north. Combined, our results suggest a temporally and spatially complex style of deformation (reverse and strike slip) overprinting older reverse deformation.}, language = {en} } @article{CifelliBallatoAlimohammadianetal.2015, author = {Cifelli, Francesca and Ballato, Paolo and Alimohammadian, Habib and Sabouri, Jafar and Mattei, Massimo}, title = {Tectonic magnetic lineation and oroclinal bending of the Alborz range: Implications on the Iran-Southern Caspian geodynamics}, series = {Tectonics}, volume = {34}, journal = {Tectonics}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2014TC003626}, pages = {116 -- 132}, year = {2015}, abstract = {In this study we use the anisotropy of magnetic susceptibility (AMS) and paleomagnetic data for deciphering the origin of magnetic lineation in weakly deformed sedimentary rocks and for evaluating oroclinal processes within the Arabia-Eurasia collision zone. In particular, we have analyzed the Miocene Upper Red Formation (URF) from the outer curved front of the southern Central Alborz Mountains of north Iran, to test for the first time with paleomagnetic data the origin (primary versus secondary) of this orogenic arc. AMS data document the existence of a magnetic lineation parallel to the orientation of the major tectonic structures, which vary along strike from WNW to ENE. These directions are highly oblique to the paleoflow directions and hence suggest that the magnetic lineation in the URF was produced by compressional deformation during layer-parallel shortening. In addition, our paleomagnetic data document clockwise and anticlockwise rotations along vertical axis for the western and eastern sectors of the Central Alborz Mountains, respectively. Combined, our results suggest that the orogen represents an orocline, which formed not earlier than circa 7.6Ma most likely through bending processes caused by the relative motion between the rigid crustal blocks of the collision zone. Moreover, our study provides new insights into the Iran-Southern Caspian Basin kinematic evolution suggesting that the present-day SW motion of the South Caspian Basin with respect to Central Iran postdates oroclinal bending and hence cannot be as old as late Miocene to early Pliocene but a rather recent configuration (i.e., 3 to <1Ma).}, language = {en} } @article{BallatoLandgrafSchildgenetal.2015, author = {Ballato, Paolo and Landgraf, Angela and Schildgen, Taylor F. and Stockli, Daniel F. and Fox, Matthew and Ghassemi, Mohammad R. and Kirby, Eric and Strecker, Manfred}, title = {The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran}, series = {Earth \& planetary science letters}, volume = {425}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.05.051}, pages = {204 -- 218}, year = {2015}, abstract = {The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from similar to 36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from 6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a similar to 3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last similar to 5 Ma. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{GhassemiFattahiLandgrafetal.2014, author = {Ghassemi, Mohammad R. and Fattahi, Morteza and Landgraf, Angela and Ahmadi, Mehdi and Ballato, Paolo and Tabatabaei, Saeid H.}, title = {Kinematic links between the Eastern Mosha Fault and the North Tehran Fault, Alborz range, northern Iran}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {622}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2014.03.007}, pages = {81 -- 95}, year = {2014}, abstract = {Kinematic interaction of faults is an important issue for detailed seismic hazard assessments in seismically active regions. The Eastern Mosha Fault (EMF) and the North Tehran Fault (NTF) are two major active faults of the southern central Alborz mountains, located in proximity of Tehran (population similar to 9 million). We used field, geomorphological and paleoseismological data to explore the kinematic transition between the faults, and compare their short-term and long-term history of activity. We introduce the Niknamdeh segment of the NTF along which the strike-slip kinematics of EMF is transferred onto the NTF, and which is also responsible for the development of a pull-apart basin between the eastern segments of the NTF. The Ira trench site at the linkage zone between the two faults reveals the history of interaction between rock avalanches, active faulting and sag-pond development. The kinematic continuity between the EMF and NTF requires updating of seismic hazard models for the NTF, the most active fault adjacent to the Tehran Metropolis. Study of offsets of large-scale morphological features along the EMF, and comparison with estimated slip rates along the fault indicates that the EMF has started its left-lateral kinematics between 3.2 and 4.7 Ma. According to our paleoseismological data and the morphology of the nearby EMF and NTF, we suggest minimum and maximum values of about 1.8 and 3.0 mm/year for the left-lateral kinematics on the two faults in their linkage zone, averaged over Holocene time scales. Our study provides a partial interpretation, based on available data, for the fault activity in northeastern Tehran region, which may be completed with studies of other active faults of the region to evaluate a more realistic seismic hazard analysis for this heavily populated major city. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{BallatoStrecker2014, author = {Ballato, Paolo and Strecker, Manfred}, title = {Assessing tectonic and climatic causal mechanisms in foreland-basin stratal architecture: insights from the Alborz Mountains, northern Iran}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {39}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.3480}, pages = {110 -- 125}, year = {2014}, abstract = {The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3-km-thick sequence of Miocene sedimentary rocks, constituting three basin-wde coarsening-upward units spanning a period of 10(6)years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment-provenance data to characterize the relationships between tectonically-generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S>1, typical of each basal unit (17.5-16.0, 13.8-13.1 and 10.3-9.6Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S<1 (13.8 and 13.8-11Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra-basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S<1, at 11-10.3Ma and 9-6-7.6Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically-induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the orogenic wedge. This in turn caused an expansion of the catchment and a consequent further increase in sediment supply.}, language = {en} } @article{YildirimMelnickBallatoetal.2013, author = {Yildirim, Cengiz and Melnick, Daniel and Ballato, Paolo and Schildgen, Taylor F. and Echtler, Helmut Peter and Erginal, A. Evren and Kiyak, Nafiye Gunec and Strecker, Manfred}, title = {Differential uplift along the northern margin of the Central Anatolian Plateau - inferences from marine terraces}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {81}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.09.011}, pages = {12 -- 28}, year = {2013}, abstract = {Emerged marine terraces and paleoshorelines along plate margins are prominent geomorphic markers that can be used to quantify the rates and patterns of crustal deformation. The northern margin of the Central Anatolian Plateau has been interpreted as an actively deforming orogenic wedge between the North Anatolian Fault and the Black Sea. Here we use uplifted marine terraces across principal faults on the Sinop Peninsula at the central northern side of the Pontide orogenic wedge to unravel patterns of Quaternary faulting and orogenic wedge behavior. We leveled the present-day elevations of paleoshorelines and dated marine terrace deposits using optically stimulated luminescence (OSL) to determine coastal uplift. The elevations of the paleoshorelines vary between 4 +/- 0.2 and 67 +/- 1.4 m above sea level and OSL ages suggest terrace formation episodes during interglacial periods at ca 125, 190, 400 and 570 ka, corresponding to marine isotopic stages (MIS) 5e, 7a, 11 and 15. Mean apparent vertical displacement rates (without eustatic correction) deduced from these terraces range between 0.02 and 0.18 mm/a, with intermittent faster rates of up to 0.26 mm/a. We obtained higher rates at the eastern and southern parts of the peninsula, toward the hinterland, indicating non-uniform uplift across the different morphotectonic segments of the peninsula. Our data are consistent with active on- and offshore faulting across the Sinop Peninsula. When integrated with regional tectonic observations, the faulting pattern reflects shortening distributed over a broad region of the northern margin of the Central Anatolian Plateau during the Quaternary.}, language = {en} }