@incollection{KriegerLiese2023, author = {Krieger, Heike and Liese, Andrea}, title = {Conclusion}, series = {Tracing value change in the international legal order}, booktitle = {Tracing value change in the international legal order}, editor = {Krieger, Heike and Liese, Andrea}, publisher = {Oxford University Press}, address = {Oxford}, isbn = {978-0-19-285583-1}, doi = {10.1093/oso/9780192855831.003.0018}, pages = {319 -- C18N113}, year = {2023}, abstract = {Based on the previous findings in this book, Chapter 18 by Heike Krieger and Andrea Liese discusses the general dynamics of change or metamorphosis in the international legal order. They discern a mixed picture of an international order between metamorphosis—that is, a more fundamental transformation—of international law, norm change, turbulences, and robustness. They explain drivers of change and highlight factors such as national interests during the war on terror, changing long-term foreign policy beliefs, and the rise in populism and autocracy, before discussing the most common strategies the actors involved use. Other relevant factors include changes in the political environment, such as shocks and power shifts or the ambiguous role of fragmentation. Moreover, they identify factors that make legal norms robust, including the vital role of norm defenders and legal and institutional structures as stabilizing elements. Krieger and Liese conclude by cautioning that if the attacks on the international order continue at the current frequency and magnitude, a metamorphosis of international law will likely be unstoppable.}, language = {en} } @article{LundgrenSquatritoSommereretal.2023, author = {Lundgren, Magnus and Squatrito, Theresa and Sommerer, Thomas and Tallberg, Jonas}, title = {Introducing the Intergovernmental Policy Output Dataset (IPOD)}, series = {The review of international organizations}, volume = {19}, journal = {The review of international organizations}, publisher = {Springer}, address = {Boston}, issn = {1559-7431}, doi = {10.1007/s11558-023-09492-6}, pages = {117 -- 146}, year = {2023}, abstract = {There is a growing recognition that international organizations (IOs) formulate and adopt policy in a wide range of areas. IOs have emerged as key venues for states seeking joint solutions to contemporary challenges such as climate change or COVID-19, and to establish frameworks to bolster trade, development, security, and more. In this capacity, IOs produce both extraordinary and routine policy output with a multitude of purposes, ranging from policies of historic significance like admitting new members to the more mundane tasks of administering IO staff. This article introduces the Intergovernmental Policy Output Dataset (IPOD), which covers close to 37,000 individual policy acts of 13 multi-issue IOs in the 1980-2015 period. The dataset fills a gap in the growing body of literature on the comparative study of IOs, providing researchers with a fine-grained perspective on the structure of IO policy output and data for comparisons across time, policy areas, and organizations. This article describes the construction and coverage of the dataset and identifies key temporal and cross-sectional patterns revealed by the data. In a concise illustration of the dataset's utility, we apply models of punctuated equilibria in a comparative study of the relationship between institutional features and broad policy agenda dynamics. Overall, the Intergovernmental Policy Output Dataset offers a unique resource for researchers to analyze IO policy output in a granular manner and to explore questions of responsiveness, performance, and legitimacy of IOs.}, language = {en} } @article{LundgrenTallbergSommereretal.2023, author = {Lundgren, Magnus and Tallberg, Jonas and Sommerer, Thomas and Squatrito, Theresa}, title = {When are international organizations responsive to policy problems?}, series = {International studies quarterly : the journal of the International Studies Association}, volume = {67}, journal = {International studies quarterly : the journal of the International Studies Association}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0020-8833}, doi = {10.1093/isq/sqad045}, pages = {14}, year = {2023}, abstract = {When are international organizations (IOs) responsive to the policy problems that motivated their establishment? While it is a conventional assumption that IOs exist to address transnational challenges, the question of whether and when IO policy-making is responsive to shifts in underlying problems has not been systematically explored. This study investigates the responsiveness of IOs from a large-n, comparative approach. Theoretically, we develop three alternative models of IO responsiveness, emphasizing severeness, dependence, and power differentials. Empirically, we focus on the domain of security, examining the responsiveness of eight multi-issue IOs to armed conflict between 1980 and 2015, using a novel and expansive dataset on IO policy decisions. Our findings suggest, first, that IOs are responsive to security problems and, second, that responsiveness is not primarily driven by dependence or power differentials but by problem severity. An in-depth study of the responsiveness of the UN Security Council using more granular data confirms these findings. As the first comparative study of whether and when IO policy adapts to problem severity, the article has implications for debates about IO responsiveness, performance, and legitimacy.}, language = {en} } @article{DuitLimSommerer2023, author = {Duit, Andreas and Lim, Sijeong and Sommerer, Thomas}, title = {The state and the environment}, series = {Politics \& policy}, volume = {51}, journal = {Politics \& policy}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {1555-5623}, doi = {10.1111/polp.12561}, pages = {1046 -- 1068}, year = {2023}, abstract = {The limitations and possibilities of the state in solving societal problems are perennial issues in the political and policy sciences and increasingly so in studies of environmental politics. With the aim of better understanding the role of the state in addressing environmental degradation through policy making, this article investigates the nexus between the environmental policy outputs and the environmental performance. Drawing on three theoretical perspectives on the state and market nexus in the environmental dilemma, we identify five distinct pathways. We then examine the extent to which these pathways are manifested in the real world. Our empirical investigation covers up to 37 countries for the period 1970-2010. While we see no global pattern of linkages between policy outputs and performance, our exploratory analysis finds evidence of policy effects, which suggest that the state can, under certain circumstances, improve the environment through policy making.}, language = {en} } @phdthesis{Djalali2023, author = {Djalali, Saveh Arman}, title = {Multiresponsive complex emulsions: Concepts for the design of active and adaptive liquid colloidal systems}, doi = {10.25932/publishup-57520}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-575203}, school = {Universit{\"a}t Potsdam}, pages = {151}, year = {2023}, abstract = {Complex emulsions are dispersions of kinetically stabilized multiphasic emulsion droplets comprised of two or more immiscible liquids that provide a novel material platform for the generation of active and dynamic soft materials. In recent years, the intrinsic reconfigurable morphological behavior of complex emulsions, which can be attributed to the unique force equilibrium between the interfacial tensions acting at the various interfaces, has become of fundamental and applied interest. As such, particularly biphasic Janus droplets have been investigated as structural templates for the generation of anisotropic precision objects, dynamic optical elements or as transducers and signal amplifiers in chemo- and bio-sensing applications. In the present thesis, switchable internal morphological responses of complex droplets triggered by stimuli-induced alterations of the balance of interfacial tensions have been explored as a universal building block for the design of multiresponsive, active, and adaptive liquid colloidal systems. A series of underlying principles and mechanisms that influence the equilibrium of interfacial tensions have been uncovered, which allowed the targeted design of emulsion bodies that can alter their shape, bind and roll on surfaces, or change their geometrical shape in response to chemical stimuli. Consequently, combinations of the unique triggerable behavior of Janus droplets with designer surfactants, such as a stimuli-responsive photosurfactant (AzoTAB) resulted for instance in shape-changing soft colloids that exhibited a jellyfish inspired buoyant motion behavior, holding great promise for the design of biological inspired active material architectures and transformable soft robotics. In situ observations of spherical Janus emulsion droplets using a customized side-view microscopic imaging setup with accompanying pendant dropt measurements disclosed the sensitivity regime of the unique chemical-morphological coupling inside complex emulsions and enabled the recording of calibration curves for the extraction of critical parameters of surfactant effectiveness. The deduced new "responsive drop" method permitted a convenient and cost-efficient quantification and comparison of the critical micelle concentrations (CMCs) and effectiveness of various cationic, anionic, and nonionic surfactants. Moreover, the method allowed insightful characterization of stimuli-responsive surfactants and monitoring of the impact of inorganic salts on the CMC and surfactant effectiveness of ionic and nonionic surfactants. Droplet functionalization with synthetic crown ether surfactants yielded a synthetically minimal material platform capable of autonomous and reversible adaptation to its chemical environment through different supramolecular host-guest recognition events. Addition of metal or ammonium salts resulted in the uptake of the resulting hydrophobic complexes to the hydrocarbon hemisphere, whereas addition of hydrophilic ammonium compounds such as amino acids or polypeptides resulted in supramolecular assemblies at the hydrocarbon-water interface of the droplets. The multiresponsive material platform enabled interfacial complexation and thus triggered responses of the droplets to a variety of chemical triggers including metal ions, ammonium compounds, amino acids, antibodies, carbohydrates as well as amino-functionalized solid surfaces. In the final chapter, the first documented optical logic gates and combinatorial logic circuits based on complex emulsions are presented. More specifically, the unique reconfigurable and multiresponsive properties of complex emulsions were exploited to realize droplet-based logic gates of varying complexity using different stimuli-responsive surfactants in combination with diverse readout methods. In summary, different designs for multiresponsive, active, and adaptive liquid colloidal systems were presented and investigated, enabling the design of novel transformative chemo-intelligent soft material platforms.}, language = {en} } @phdthesis{Kim2023, author = {Kim, Jiyong}, title = {Synthesis of InP quantum dots and their applications}, doi = {10.25932/publishup-58535}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-585351}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 142}, year = {2023}, abstract = {Technologically important, environmentally friendly InP quantum dots (QDs) typically used as green and red emitters in display devices can achieve exceptional photoluminescence quantum yields (PL QYs) of near-unity (95-100\%) when the-state-of-the-art core/shell heterostructure of the ZnSe inner/ZnS outer shell is elaborately applied. Nevertheless, it has only led to a few industrial applications as QD liquid crystal display (QD-LCD) which is applied to blue backlight units, even though QDs has a lot of possibilities that able to realize industrially feasible applications, such as QD light-emitting diodes (QD‒LEDs) and luminescence solar concentrator (LSC), due to their functionalizable characteristics. Before introducing the main research, the theoretical basis and fundamentals of QDs are described in detail on the basis of the quantum mechanics and experimental synthetic results, where a concept of QD and colloidal QD, a type-I core/shell structure, a transition metal doped semiconductor QDs, the surface chemistry of QD, and their applications (LSC, QD‒LEDs, and EHD jet printing) are sequentially elucidated for better understanding. This doctoral thesis mainly focused on the connectivity between QD materials and QD devices, based on the synthesis of InP QDs that are composed of inorganic core (core/shell heterostructure) and organic shell (surface ligands on the QD surface). In particular, as for the former one (core/shell heterostructure), the ZnCuInS mid-shell as an intermediate layer is newly introduced between a Cu-doped InP core and a ZnS shell for LSC devices. As for the latter one (surface ligands), the ligand effect by 1-octanethiol and chloride ion are investigated for the device stability in QD‒LEDs and the printability of electro-hydrodynamic (EHD) jet printing system, in which this research explores the behavior of surface ligands, based on proton transfer mechanism on the QD surface. Chapter 3 demonstrates the synthesis of strain-engineered highly emissive Cu:InP/Zn-Cu-In-S (ZCIS)/ZnS core/shell/shell heterostructure QDs via a one-pot approach. When this unconventional combination of a ZCIS/ZnS double shelling scheme is introduced to a series of Cu:InP cores with different sizes, the resulting Cu:InP/ZCIS/ZnS QDs with a tunable near-IR PL range of 694-850 nm yield the highest-ever PL QYs of 71.5-82.4\%. These outcomes strongly point to the efficacy of the ZCIS interlayer, which makes the core/shell interfacial strain effectively alleviated, toward high emissivity. The presence of such an intermediate ZCIS layer is further examined by comparative size, structural, and compositional analyses. The end of this chapter briefly introduces the research related to the LSC devices, fabricated from Cu:InP/ZCIS/ZnS QDs, currently in progress. Chapter 4 mainly deals with ligand effect in 1-octanethiol passivation of InP/ZnSe/ZnS QDs in terms of incomplete surface passivation during synthesis. This chapter demonstrates the lack of anionic carboxylate ligands on the surface of InP/ZnSe/ZnS quantum dots (QDs), where zinc carboxylate ligands can be converted to carboxylic acid or carboxylate ligands via proton transfer by 1-octanethiol. The as-synthesized QDs initially have an under-coordinated vacancy surface, which is passivated by solvent ligands such as ethanol and acetone. Upon exposure of 1-octanethiol to the QD surface, 1-octanthiol effectively induces the surface binding of anionic carboxylate ligands (derived from zinc carboxylate ligands) by proton transfer, which consequently exchanges ethanol and acetone ligands that bound on the incomplete QD surface. The systematic chemical analyses, such as thermogravimetric analysis‒mass spectrometry and proton nuclear magnetic resonance spectroscopy, directly show the interplay of surface ligands, and it associates with QD light-emitting diodes (QD‒LEDs). Chapter 5 shows the relation between material stability of QDs and device stability of QD‒LEDs through the investigation of surface chemistry and shell thickness. In typical III-V colloidal InP quantum dots (QDs), an inorganic ZnS outermost shell is used to provide stability when overcoated onto the InP core. However, this work presents a faster photo-degradation of InP/ZnSe/ZnS QDs with a thicker ZnS shell than that with a thin ZnS shell when 1-octanethiol was applied as a sulfur source to form ZnS outmost shell. Herein, 1-octanethiol induces the form of weakly-bound carboxylate ligand via proton transfer on the QD surface, resulting in a faster degradation at UV light even though a thicker ZnS shell was formed onto InP/ZnSe QDs. Detailed insight into surface chemistry was obtained from proton nuclear magnetic resonance spectroscopy and thermogravimetric analysis-mass spectrometry. However, the lifetimes of the electroluminescence devices fabricated from InP/ZnSe/ZnS QDs with a thick or a thin ZnS shell show surprisingly the opposite result to the material stability of QDs, where the QD light-emitting diodes (QD‒LEDs) with a thick ZnS shelled QDs maintained its luminance more stable than that with a thin ZnS shelled QDs. This study elucidates the degradation mechanism of the QDs and the QD light-emitting diodes based on the results and discuss why the material stability of QDs is different from the lifetime of QD‒LEDs. Chapter 6 suggests a method how to improve a printability of EHD jet printing when QD materials are applied to QD ink formulation, where this work introduces the application of GaP mid-shelled InP QDs as a role of surface charge in EHD jet printing technique. In general, GaP intermediate shell has been introduced in III-V colloidal InP quantum dots (QDs) to enhance their thermal stability and quantum efficiency in the case of type-I core/shell/shell heterostructure InP/GaP/ZnSeS QDs. Herein, these highly luminescent InP/GaP/ZnSeS QDs were synthesized and applied to EHD jet printing, by which this study demonstrates that unreacted Ga and Cl ions on the QD surface induce the operating voltage of cone jet and cone jet formation to be reduced and stabilized, respectively. This result indicates GaP intermediate shell not only improves PL QY and thermal stability of InP QDs but also adjusts the critical flow rate required for cone-jet formation. In other words, surface charges of quantum dots can have a significant role in forming cone apex in the EHD capillary nozzle. For an industrially convenient validation of surface charges on the QD surface, Zeta potential analyses of QD solutions as a simple method were performed, as well as inductively coupled plasma optical emission spectrometry (ICP-OES) for a composition of elements. Beyond the generation of highly emissive InP QDs with narrow FWHM, these studies talk about the connection between QD material and QD devices not only to make it a vital jumping-off point for industrially feasible applications but also to reveal from chemical and physical standpoints the origin that obstructs the improvement of device performance experimentally and theoretically.}, language = {en} } @phdthesis{Lepre2023, author = {Lepre, Enrico}, title = {Nitrogen-doped carbonaceous materials for energy and catalysis}, doi = {10.25932/publishup-57739}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577390}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2023}, abstract = {Facing the environmental crisis, new technologies are needed to sustain our society. In this context, this thesis aims to describe the properties and applications of carbon-based sustainable materials. In particular, it reports the synthesis and characterization of a wide set of porous carbonaceous materials with high nitrogen content obtained from nucleobases. These materials are used as cathodes for Li-ion capacitors, and a major focus is put on the cathode preparation, highlighting the oxidation resistance of nucleobase-derived materials. Furthermore, their catalytic properties for acid/base and redox reactions are described, pointing to the role of nitrogen speciation on their surfaces. Finally, these materials are used as supports for highly dispersed nickel loading, activating the materials for carbon dioxide electroreduction.}, language = {en} } @phdthesis{Xie2023, author = {Xie, Dongjiu}, title = {Nanostructured Iron-based compounds as sulfur host material for lithium-sulfur batteries}, doi = {10.25932/publishup-61036}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-610369}, school = {Universit{\"a}t Potsdam}, pages = {viii, 142}, year = {2023}, abstract = {The present thesis focuses on the synthesis of nanostructured iron-based compounds by using β-FeOOH nanospindles and poly(ionic liquid)s (PILs) vesicles as hard and soft templates, respectively, to suppress the shuttle effect of lithium polysulfides (LiPSs) in Li-S batteries. Three types of composites with different nanostructures (mesoporous nanospindle, yolk-shell nanospindle, and nanocapsule) have been synthesized and applied as sulfur host material for Li-S batteries. Their interactions with LiPSs and effects on the electrochemical performance of Li-S batteries have been systematically studied. In the first part of the thesis, carbon-coated mesoporous Fe3O4 (C@M-Fe3O4) nanospindles have been synthesized to suppress the shuttle effect of LiPSs. First, β-FeOOH nanospindles have been synthesized via the hydrolysis of iron (III) chloride in aqueous solution and after silica coating and subsequent calcination, mesoporous Fe2O3 (M-Fe2O3) have been obtained inside the confined silica layer through pyrolysis of β-FeOOH. After the removal of the silica layer, electron tomography (ET) has been applied to rebuild the 3D structure of the M-Fe2O3 nanospindles. After coating a thin layer of polydopamine (PDA) as carbon source, the PDA-coated M-Fe2O3 particles have been calcinated to synthesize C@M-Fe3O4 nanospindles. With the chemisorption of Fe3O4 and confinement of mesoporous structure to anchor LiPSs, the composite C@M-Fe3O4/S electrode delivers a remaining capacity of 507.7 mAh g-1 at 1 C after 600 cycles. In the second part of the thesis, a series of iron-based compounds (Fe3O4, FeS2, and FeS) with the same yolk-shell nanospindle morphology have been synthesized, which allows for the direct comparison of the effects of compositions on the electrochemical performance of Li-S batteries. The Fe3O4-carbon yolk-shell nanospindles have been synthesized by using the β-FeOOH nanospindles as hard template. Afterwards, Fe3O4-carbon yolk-shell nanospindles have been used as precursors to obtain iron sulfides (FeS and FeS2)-carbon yolk-shell nanospindles through sulfidation at different temperatures. Using the three types of yolk-shell nanospindles as sulfur host, the effects of compositions on interactions with LiPSs and electrochemical performance in Li-S batteries have been systematically investigated and compared. Benefiting from the chemisorption and catalytic effect of FeS2 particles and the physical confinement of the carbon shell, the FeS2-C/S electrode exhibits the best electrochemical performance with an initial specific discharge capacity of 877.6 mAh g-1 at 0.5 C and a retention ratio of 86.7\% after 350 cycles. In the third part, PILs vesicles have been used as soft template to synthesize carbon nanocapsules embedded with iron nitride particles to immobilize and catalyze LiPSs in Li-S batteries. First, 3-n-decyl-1-vinylimidazolium bromide has been used as monomer to synthesize PILs nanovesicles by free radical polymerization. Assisted by PDA coating route and ion exchange, PIL nanovesicles have been successfully applied as soft template in morphology-maintaining carbonization to prepare carbon nanocapsules embedded with iron nitride nanoparticles (FexN@C). The well-dispersed iron nitride nanoparticles effectively catalyze the conversion of LiPSs to Li2S, owing to their high electrical conductivity and strong chemical binding to LiPSs. The constructed FexN@C/S cathode demonstrates a high initial discharge capacity of 1085.0 mAh g-1 at 0.5 C with a remaining value of 930.0 mAh g-1 after 200 cycles. The results in the present thesis demonstrate the facile synthetic routes of nanostructured iron-based compounds with controllable morphologies and compositions using soft and hard colloidal templates, which can be applied as sulfur host to suppress the shuttle behavior of LiPSs. The synthesis approaches developed in this thesis are also applicable to fabricating other transition metal-based compounds with porous nanostructures for other applications.}, language = {en} } @phdthesis{Hildebrandt2023, author = {Hildebrandt, Jana}, title = {Studies on nanoplastics for the preparation of reference materials}, doi = {10.25932/publishup-61710}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617102}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 88}, year = {2023}, abstract = {The present work focuses on the preparation and characterisation of various nanoplastic reference material candidates. Nanoplastics are plastic particles in a size range of 1 - 1000 nm. The term has emerged in recent years as a distinction from the larger microplastic (1 - 1000 μm). Since the properties of the two plastic particles differ significantly due to their size, it is important to have nanoplastic reference material. This was produced for the polymer types polypropylene (PP) and polyethylene (PE) as well as poly(lactic acid) (PLA). A top-down method was used to produce the nanoplastic for the polyolefins PP and PE (Section 3.1). The material was crushed in acetone using an Ultra-Turrax disperser and then transferred to water. This process produces reproducible results when repeated, making it suitable for the production of a reference material candidate. The resulting dispersions were investigated using dynamic and electrophoretic light scattering. The dispersion of PP particles gave a mean hydrodynamic diameter Dh = 180.5±5.8 nm with a PDI = 0.08±0.02 and a zeta potential ζ = -43.0 ± 2.0 mV. For the PE particles, a diameter Dh = 344.5 ± 34.6 nm, with a PDI = 0.39 ± 0.04 and a zeta potential of ζ = -40.0 ± 4.2 mV was measured. This means that both dispersions are nanoplastics, as the particles are < 1000 nm. Furthermore, the starting material of these polyolefin particles was mixed with a gold salt and thereby the nanoplastic production was repeated in order to obtain nanoplastic particles doped with gold, which should simplify the detection of the particles. In addition to the top-down approach, a bottom-up method was chosen for the PLA (Section 3.2). Here, the polymer was first dissolved in THF and stabilised with a surfactant. Then water was added and THF evaporated, leaving an aqueous PLA dispersion. This experiment was also investigated using dynamic light scattering and, when repeated, yielded reproducible results, i. e. an average hydrodynamic diameter of Dh = 89.2 ± 3.0 nm. Since the mass concentration of PLA in the dispersion is known due to the production method, a Python notebook was tested for these samples to calculate the number and mass concentration of nano(plastic) particles using the MALS results. Similar to the plastic produced in Section 3.1, gold was also incorporated into the particle, which was achieved by adding a dispersion of gold clusters with a diameter of D = 1.15 nm in an ionic liquid (IL) in the production process. Here, the preparation of the gold clusters in the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide ([Emim][DCA]) represented the first use of an IL both as a reducing agent for gold and as a solvent for the gold clusters. Two volumes of gold cluster dispersion were added during the PLA particle synthesis. The addition of the gold clusters leads to much larger particles. The nanoPLA with 0.8\% Au has a diameter of Dh = 198.0 ± 10.8 nm and the nanoPLA with 4.9\% Au has a diameter of Dh = 259.1 ± 23.7 nm. First investigations by TEM imaging show that the nanoPLA particles form hollow spheres when gold clusters are added. However, the mechanism leading to these structures remains unclear.}, language = {en} } @phdthesis{Stoermann2023, author = {St{\"o}rmann, Florian Konstantin}, title = {Multifunctional Microballoons for the active and passive control of fluid-flows}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 104, A24}, year = {2023}, abstract = {Functional materials, also called "Smart Materials", are described by their ability to fulfill a desired task through targeted interaction with its environment. Due to this functional integration, such materials are of increased interest, especially in areas where the increasing micronization of components is required. Modern manufacturing processes (e.g. microfluidics) and the availability of a wide variety of functional materials (e.g. shape memory materials) now enable the production of particle-based switching components. This category includes micropumps and microvalves, whose basic function is the active control of liquid flows. One approach in realizing those microcomponents as pursued by this work, enables variable size-switching of water-filled microballoons by implementing a stimulus-sensitive switching motif in the capsule's membrane shell, while being under the influence of a constant driving force. The switching motif with its gatekeeper function has a critical influence on one or more material parameters, which modulate the capsule's resistance against the driving force in microballoon expansion process. The advantage of this concept is that even non-variable analyte conditions, such as concentration levels of ions, can be capitalized to generate external force fields that, under the control of the membrane, cause an inflation of the microballoon by an osmotically driven water influx. In case of osmotic pressure gradients as the driving force for the capsule expansion, material parameters associated with the gatekeeper function are specifically the permeability and the mechanical stiffness of the shell material. While a modulation of the shell permeability could be utilized to kinetically impede the water influx on large time scales, a modulation of the shell's mechanical stiffness even might be utilized to completely prevent the capsule inflation due to a possible non-deformability beneath a certain threshold pressure. In polymer networks, which are a suitable material class for the demanded capsule shell because of their excellent elasticity, both the permeability and the mechanical properties are strongly influenced by the crystallinity of the material. Since the permeability is effectively reduced with increasing crystallinity, while the mechanical stiffness is simultaneously greatly increased, both effects point in the same direction in terms of their functional relationship. For this reason and due to a reversible and contactless modulation of the membrane crystallinity by heat input, crystallites may be suitable switching motifs for controlling the capsule expansion. As second design element of reversible expandable microballoons, the capsule geometry, defined by an aqueous core enveloped by the temperature-sensitive polymer network membrane, should allow an osmotic pressure gradient across the membrane layer. The strength of the inflation pressure and the associated inflation velocity upon membrane melting should be controlled by the salt concentration within the aqueous core, while a turn in the osmotic gradient should furthermore allow the reversible process of capsule deflation. Therefore, it should be possible to build either microvalves and micropumps, while their intended action of either pumping or valving is determined by their state of expansion and the direction of the osmotic pressure gradient.. Microballoons of approximately 300 µm in diameter were formed via droplet-based microfluidics from double-emulsion templates (w/o/w). The elastomeric capsule membrane was formed by photo-crosslinking of methacrylate (MA) functionalized oligo(ε-caprolactone) precursors (≈ 3.8 MA-arms, Mn ≈ 12000 g mol-1) within the organic medium layer (o) via UV-exposure after droplet-formation. After removal of the toluene/chloroform mixture by slow extraction via the continuous aqueous phase, the capsules solidified under the development of a characteristic "mushroom"-like shape at specific experimental conditions (e.g. λ = 308 nm, 57 mJ·s-1·cm-2, 16 min). It could be furthermore shown that in dependency to the process parameters: oligomer concentration and curing-time also spherical capsules were accessible. Long curing-times and high oligomer concentrations at a fixed light-intensity favored the formation of "mushroom"-like capsules, whereas the contrary led to spherical shaped capsules. A comparative study on thin polymer network films of same composition and equal treatment proved a correlation between the film's crosslink density and their contraction capability, while stronger crosslinked polymer networks showed a stronger contraction after solvent removal. In combination with observations during capsule solidification via light-microscopy, where a continuous shaping from almost spherical crosslinked templates to "mushroom"-shaped and solidified capsules was stated, the following mechanism was proposed. In case of low oligomer contents and short curing-times, the contraction of the capsule shell during solvent removal is strongly diminished due to a low degree of crosslinking. Therefore, the solidifying shell could freely collapse onto the aqueous core. In the other case, high oligomer concentrations and long curing-times will favor the formation of highly crosslinked capsule membranes with a strong contraction capability. Due to an observed decentered location of the aqueous core within the swollen polymer network, an uneven radial stress along the capsule's circumference is exerted to the incompressible core. This lead to an uneven contraction during solvent removal and a directed flow of the core fluid into the direction of the minimal stress vector. In consequence, the initially thicker spherical cap contracts, whereas the opposing thinner spherical cap get stretched. The "mushroom"-shape over some advantages over their spherical shaped counterparts, why they were selected for the further experiments. Besides the necessity of a high density of crosslinking for the purpose of extraordinary elasticity and toughness, the form-anisotropy promotes a faster microballoon expandability due to a partial reduction of the membrane thickness. Additionally, pre-stretched regions of thin thickness might provide a better resistance against inflation pressure than spherical but non-stretched capsules of equal membrane thickness. The resulting "mushroom"-shaped microcapsules exhibited a melting point of Tm ≈ 50 - 60 °C and a degree of crystallinity of Xc ≈ 29 - 38 \% depending on the membrane thickness and internal salt content, which is slightly lower than for the non-crosslinked oligomer and reasoned by a limited chain mobility upon crosslinking. Nonetheless, the melting transition of the polymer network was associated with a strong drop in its mechanical stiffness, which was shown to have a strong influence on the osmotic driven expansion of the microcapsules. Capsules that were subjected to osmotic pressures between 1.5 and 4.7 MPa did not expand if the temperature was well below the melting point of the capsule's membrane, i.e. at room temperature. In contrast, a continuous expansion, while approaching asymptotically to a final capsule size, was observed if the temperature exceeded the melting point, i.e. 60 °C. Microballoons, which were kept for 56 days at ∆Π = 1.5 MPa and room temperature, did not change significantly in diameter, why the impact of the mechanical stiffness on the expansion behavior is considered to be the greater than the influence of the shell permeability. The time-resolved expansion behavior of the microballoons above their Tm was subsequently modeled, using difusion equations that were corrected for shape anisotropy and elastic restoring forces. A shape-related and expansion dependent pre-factor was used to dynamically address the influence of the shell thickness differences along the circumference on the inflation velocity, whereas the microballoon's elastic contraction upon inflation was rendered by the inclusion of a hyperelastic constitutive model. An important finding resulting from this model was the pronounced increase in inflation velocity compared to hypothetical capsules with a homogeneous shell thickness, which stresses the benefit of employing shape anisotropic balloon-like capsules in this study. Furthermore, the model was able to predict the finite expandability on basis of entropy-elastic recovery forces and strain-hardening effects. A comparison of six different microballoons with different shell thicknesses and internal salt contents showed the linear relationship between the volumetric expansion, the shell thickness and the applied osmotic pressure, as represented by the model. As the proposed model facilitates the prediction of the expansion kinetics depending on the membranes mechanical and diffusional characteristics, it might be a screening tool for future material selections. In course of the microballoon expansion process, capsules of intermediate diameters could be isolated by recrystallization of the membrane, which is mainly caused by a restoration of the membrane's mechanical stiffness and is otherwise difficult to achieve with other stimuli-sensitive systems. The capsule's crystallinity of intermediate expansion states was nearly unchanged, whereas the lamellar crystal size tends to decreased with the expansion ratio. Therefore, it was assumed that the elastic modulus was only minimally altered and might increased due to the networks segment-chain extension. In addition to the volume increase achieved by inflation, a turn in the osmotic gradient also facilitated the reversible deflation, which was shown in inflation/deflation cycles. These both characteristics of the introduced microballoons are important parameter regarding the realization of micropumps and microvalves. The fixation of expanded microcapsules via recrystallization enabled the storage of entropy-elastic strain-energy, which could be utilized for pumping actions in non-aqueous media. Here, the pumping velocity depended on both, the type of surrounding medium and the applied temperature. Surrounding media that supported the fast transport of pumped liquid showed an accelerated deflation, while high temperatures further accelerate the pumping velocity. Very fast rejection of the incorporated payload was furthermore realized with pierced expanded microballoons, which were subjected to temperatures above their Tm. The possible fixation of intermediate particle sizes provide opportunities for vent constructions that allowed the precise adjustment of specific flow-rates and multiple valve openings and closings. A valve construction was realized by the insertion of a single or multiple microballoons in a microfluidic channel. A complete and a partial closing of the microballoon-valves was demonstrated as a function of the heating period. In this context, a difference between the inflation and deflation velocity was stated, summarizing slower expansion kinetics. Overall, microballoons, which presented both on-demand pumping and reversible valving by a temperature-triggered change in the capsule's volume, might be suitable components that help to design fully integrated LOC devices, due to the implementation of the control switch and controllable inflation/deflation kinetics. In comparison to other state of the art stimuli-sensitive materials, one has to highlight the microballoons capability of stabilizing almost continuously intermediate capsule sizes by simple recrystallization of the microballoon's membrane.}, language = {en} }