@phdthesis{Slezak2013, author = {Slezak, Kathleen}, title = {Impact of intestinal bacteria on the anatomy and physiology of the intestinal tract in the PRM/Alf mouse model}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68946}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Introduction: Intestinal bacteria influence gut morphology by affecting epithelial cell proliferation, development of the lamina propria, villus length and crypt depth [1]. Gut microbiota-derived factors have been proposed to also play a role in the development of a 30 \% longer intestine, that is characteristic of PRM/Alf mice compared to other mouse strains [2, 3]. Polyamines and SCFAs produced by gut bacteria are important growth factors, which possibly influence mucosal morphology, in particular villus length and crypt depth and play a role in gut lengthening in the PRM/Alf mouse. However, experimental evidence is lacking. Aim: The objective of this work was to clarify the role of bacterially-produced polyamines on crypt depth, mucosa thickness and epithelial cell proliferation. For this purpose, C3H mice associated with a simplified human microbiota (SIHUMI) were compared with mice colonized with SIHUMI complemented by the polyamine-producing Fusobacterium varium (SIHUMI + Fv). In addition, the microbial impact on gut lengthening in PRM/Alf mice was characterized and the contribution of SCFAs and polyamines to this phenotype was examined. Results: SIHUMI + Fv mice exhibited an up to 1.7 fold higher intestinal polyamine concentration compared to SIHUMI mice, which was mainly due to increased putrescine concentrations. However, no differences were observed in crypt depth, mucosa thickness and epithelial proliferation. In PRM/Alf mice, the intestine of conventional mice was 8.5 \% longer compared to germfree mice. In contrast, intestinal lengths of C3H mice were similar, independent of the colonization status. The comparison of PRM/Alf and C3H mice, both associated with SIHUMI + Fv, demonstrated that PRM/Alf mice had a 35.9 \% longer intestine than C3H mice. However, intestinal SCFA and polyamine concentrations of PRM/Alf mice were similar or even lower, except N acetylcadaverine, which was 3.1-fold higher in PRM/Alf mice. When germfree PRM/Alf mice were associated with a complex PRM/Alf microbiota, the intestine was one quarter longer compared to PRM/Alf mice colonized with a C3H microbiota. This gut elongation correlated with levels of the polyamine N acetylspermine. Conclusion: The intestinal microbiota is able to influence intestinal length dependent on microbial composition and on the mouse genotype. Although SCFAs do not contribute to gut elongation, an influence of the polyamines N acetylcadaverine and N acetylspermine is conceivable. In addition, the study clearly demonstrated that bacterial putrescine does not influence gut morphology in C3H mice.}, language = {en} } @misc{Blaut2015, author = {Blaut, Michael}, title = {Gut microbiota and energy balance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {602}, issn = {1866-8372}, doi = {10.25932/publishup-41446}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414462}, pages = {227 -- 234}, year = {2015}, abstract = {The microbial community populating the human digestive tract has been linked to the development of obesity, diabetes and liver diseases. Proposed mechanisms on how the gut microbiota could contribute to obesity and metabolic diseases include: (1) improved energy extraction from diet by the conversion of dietary fibre to SCFA; (2) increased intestinal permeability for bacterial lipopolysaccharides (LPS) in response to the consumption of high-fat diets resulting in an elevated systemic LPS level and low-grade inflammation. Animal studies indicate differences in the physiologic effects of fermentable and non-fermentable dietary fibres as well as differences in long-and short-term effects of fermentable dietary fibre. The human intestinal microbiome is enriched in genes involved in the degradation of indigestible polysaccharides. The extent to which dietary fibres are fermented and in which molar ratio SCFA are formed depends on their physicochemical properties and on the individual microbiome. Acetate and propionate play an important role in lipid and glucose metabolism. Acetate serves as a substrate for de novo lipogenesis in liver, whereas propionate can be utilised for gluconeogenesis. The conversion of fermentable dietary fibre to SCFA provides additional energy to the host which could promote obesity. However, epidemiologic studies indicate that diets rich in fibre rather prevent than promote obesity development. This may be due to the fact that SCFA are also ligands of free fatty acid receptors (FFAR). Activation of FFAR leads to an increased expression and secretion of enteroendocrine hormones such as glucagon-like-peptide 1 or peptide YY which cause satiety. In conclusion, the role of SCFA in host energy balance needs to be re-evaluated.}, language = {en} } @phdthesis{Schroeder2015, author = {Schr{\"o}der, Christine}, title = {Identifizierung und Charakterisierung der Isoflavon-umsetzenden Enzyme aus dem humanen Darmbakterium Slackia isoflavoniconvertens}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-80065}, school = {Universit{\"a}t Potsdam}, pages = {X, 129}, year = {2015}, abstract = {Aufgrund ihrer potenziell gesundheitsf{\"o}rdernden Wirkung sind die polyphenolischen Isoflavone f{\"u}r die menschliche Ern{\"a}hrung von großem Interesse. Eine Vielzahl an experimentellen und epidemiologischen Studien zeigen f{\"u}r die in Soja enthaltenen Isoflavone Daidzein und Genistein eine pr{\"a}ventive Wirkung bez{\"u}glich hormon-abh{\"a}ngiger und altersbedingter Erkrankungen, wie Brust- und Prostatakrebs, Osteoporose, Herz-Kreislauf-Erkrankungen sowie des menopausalen Syndroms. Die Metabolisierung und Bioaktivierung dieser sekund{\"a}ren Pflanzenstoffe durch die humane intestinale Darmmikrobiota ist individuell unterschiedlich. Nur in einem geringen Teil der westlichen Bev{\"o}lkerung wird der Daidzein-Metabolit Equol durch spezifische Darmbakterien gebildet. Ein isoliertes Equol-produzierendes Bakterium des menschlichen Darmtrakts ist Slackia isoflavoniconvertens. Anhand dieser Spezies sollten die bislang unbekannten, an der Umsetzung von Daidzein und Genistein beteiligten Enzyme identifiziert und charakterisiert werden. Fermentationsexperimente mit S. isoflavoniconvertens zeigten, dass die Gene der Daidzein und Genistein-umsetzenden Enzyme nicht konstitutiv exprimiert werden, sondern induziert werden m{\"u}ssen. Mit Hilfe der zweidimensionalen differentiellen Gelelektrophorese wurden sechs Proteine detektiert, welche in einer S. isoflavoniconvertens-Kultur in Anwesenheit von Daidzein induziert wurden. Auf Grundlage einzelner Peptidsequenzen erfolgte die Sequenzierung eines Genkomplexes mit den in gleicher Orientierung angeordneten Genen der durch Daidzein induzierten Proteine. Sequenzvergleiche identifizierten zudem {\"a}quivalente Genprodukte zu den Proteinen von S. isoflavoniconvertens in anderen Equolproduzierenden Bakterien. Nach der heterologen Expression in Escherichia coli wurden drei dieser Gene durch enzymatische Aktivit{\"a}tstests als Daidzein-Reduktase (DZNR), Dihydrodaidzein-Reduktase (DHDR) und Tetrahydrodaidzein-Reduktase (THDR) identifiziert. Die Kombination der E. coli-Zellextrakte f{\"u}hrte zur vollst{\"a}ndigen Umsetzung von Daidzein {\"u}ber Dihydrodaidzein zu Equol. Neben Daidzein setzte die DZNR auch Genistein zu Dihydrogenistein um. Dies erfolgte mit einer gr{\"o}ßeren Umsatzgeschwindigkeit im Vergleich zur Reduktion von Daidzein zu Dihydrodaidzein. Enzymatische Aktivit{\"a}tstests mit dem Zellextrakt von S. isoflavoniconvertens zeigten ebenfalls eine schnellere Umsetzung von Genistein. Die Kombination der rekombinanten DHDR und THDR f{\"u}hrte zur Umsetzung von Dihydrodaidzein zu Equol. Der korrespondierende Metabolit 5-Hydroxyequol konnte als Endprodukt des Genistein-Metabolismus nicht detektiert werden. Zur Reinigung der drei identifizierten Reduktasen wurden diese genetisch an ein Strep-tag fusioniert und mittels Affinit{\"a}tschromatographie gereinigt. Die {\"u}brigen durch Daidzein induzierten Proteine IfcA, IfcBC und IfcE wurden ebenfalls in E. coli exprimiert und als Strep-Fusionsproteine gereinigt. Vergleichende Aktivit{\"a}tstests identifizierten das induzierte Protein IfcA als Dihydrodaidzein-Racemase. Diese katalysierte die Umsetzung des (R)- und (S)-Enantiomers von Dihydrodaidzein und Dihydrogenistein zum korrespondierenden Racemat. Neben dem Elektronentransfer-Flavoprotein IfcBC wurden auch die THDR, DZNR und IfcE als FAD-haltige Flavoproteine identifiziert. Zudem handelte es sich bei IfcE um ein Eisen-Schwefel-Protein. Nach Induktion der f{\"u}r die Daidzein-Umsetzung kodierenden Gene wurden mehrere verschieden lange mRNA-Transkripte gebildet. Dies zeigte, dass die Transkription des durch Daidzein induzierten Genkomplexes in S. isoflavoniconvertens nicht in Form eines einzelnen Operonsystems erfolgte. Auf Grundlage der identifizierten Daidzein-umsetzenden Enzyme kann der Mechanismus der bakteriellen Umsetzung von Isoflavonen durch S. isoflavoniconvertens eingehend erforscht werden. Die ermittelten Gensequenzen der durch Daidzein induzierten Proteine sowie die korrespondierenden Gene weiterer Equol-produzierender Bakterien bieten zudem die M{\"o}glichkeit der mikrobiellen Metagenomanalyse im humanen Darmtrakt.}, language = {de} } @phdthesis{Ring2018, author = {Ring, Christiane}, title = {The role of the commensal gut bacterium Akkermansia muciniphila in acute and chronic intestinal inflammation}, year = {2018}, abstract = {Microbiota analyses of patients suffering from various diseases suggest a beneficial role of Akkermansia muciniphila in the maintenance of health, whereas several studies in animal models of intestinal inflammation report that this organism may aggravate inflammation. Therefore, it is important to clarify under which circumstances A. muciniphila exerts negative effects in the intestine of its host. The previously reported observation that A. muciniphila aggravates acute intestinal inflammation in the Salmonella enterica serovar Typhimurium infection mouse model colonized with a simplified human intestinal microbiota was investigated in this study. To unravel the underlying mechanism that led to the observed phenomenon, the time course of events following the infection was analyzed. In mice colonized with a simplified human intestinal microbiota, Salmonella infection induced clear signs of intestinal inflammation three days post infection. The inflammatory response was similar in mice colonized with A. muciniphila before Salmonella infection. These observations were independent of the time when colonization with the simplified human intestinal microbiota occurred, right after birth or only after weaning, and contradict the previous report. To find out whether A. muciniphila influences the development of chronic intestinal inflammation in a genetically predisposed host, mono-associated interleukin-10-deficient (Il10-/-) mice, Il10-/- mice dual-associated with A. muciniphila and colitogenic Escherichia coli NC101, as well as Il10-/- mice associated with A. muciniphila and a simplified human intestinal microbiota were compared to the respective mice without A. muciniphila. The data clearly show that in these gnotobiotic Il10-/- mice, A. muciniphila neither induces intestinal inflammation itself nor modulates it after induction by a colitogenic bacterium or by a simplified human intestinal microbiota. The experiments lead to the conclusion that the promotion of intestinal inflammation is not an intrinsic feature of this bacterium. The results of this study encourage the proposed use of A. muciniphila for the prevention or treatment of metabolic disorders.}, language = {en} } @article{WeitkunatBishopWittmuessetal.2021, author = {Weitkunat, Karolin and Bishop, Christopher Allen and Wittm{\"u}ss, Maria and Machate, Tina and Schifelbein, Tina and Schulze, Matthias Bernd and Klaus, Susanne}, title = {Effect of microbial status on hepatic odd-chain fatty acids is diet-dependent}, series = {Nutrients / Molecular Diversity Preservation International (MDPI)}, volume = {13}, journal = {Nutrients / Molecular Diversity Preservation International (MDPI)}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu13051546}, pages = {15}, year = {2021}, abstract = {Odd-chain fatty acids (OCFA) are inversely associated with type-2-diabetes in epidemiological studies. They are considered as a biomarker for dairy intake because fermentation in ruminants yields high amounts of propionate, which is used as the primer for lipogenesis. Recently, we demonstrated endogenous OCFA synthesis from propionate in humans and mice, but how this is affected by microbial colonization is still unexplored. Here, we investigated the effect of increasing microbiota complexity on hepatic lipid metabolism and OCFA levels in different dietary settings. Germ-free (GF), gnotobiotic (SIH, simplified human microbiota) or conventional (CONV) C3H/HeOuJ-mice were fed a CHOW or high-fat diet with inulin (HFI) to induce microbial fermentation. We found that hepatic lipogenesis was increased with increasing microbiota complexity, independently of diet. In contrast, OCFA formation was affected by diet as well as microbiota. On CHOW, hepatic OCFA and intestinal gluconeogenesis decreased with increasing microbiota complexity (GF > SIH > CONV), while cecal propionate showed a negative correlation with hepatic OCFA. On HFI, OCFA levels were highest in SIH and positively correlated with cecal propionate. The propionate content in the CHOW diet was 10 times higher than that of HFI. We conclude that bacterial propionate production affects hepatic OCFA formation, unless this effect is masked by dietary propionate intake.}, language = {en} }