@article{SurminskiThieken2017, author = {Surminski, Swenja and Thieken, Annegret}, title = {Promoting flood risk reduction}, series = {Earth's Future}, volume = {5}, journal = {Earth's Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000587}, pages = {979 -- 1001}, year = {2017}, abstract = {Improving society's ability to prepare for, respond to and recover from flooding requires integrated, anticipatory flood risk management (FRM). However, most countries still focus their efforts on responding to flooding events if and when they occur rather than addressing their current and future vulnerability to flooding. Flood insurance is one mechanism that could promote a more ex ante approach to risk by supporting risk reduction activities. This paper uses an adapted version of Easton's System Theory to investigate the role of insurance for FRM in Germany and England. We introduce an anticipatory FRM framework, which allows flood insurance to be considered as part of a broader policy field. We analyze if and how flood insurance can catalyze a change toward a more anticipatory approach to FRM. In particular we consider insurance's role in influencing five key components of anticipatory FRM: risk knowledge, prevention through better planning, property\&\#8208;level protection measures, structural protection and preparedness (for response). We find that in both countries FRM is still a reactive, event\&\#8208;driven process, while anticipatory FRM remains underdeveloped. Collaboration between insurers and FRM decision\&\#8208;makers has already been successful, for example in improving risk knowledge and awareness, while in other areas insurance acts as a disincentive for more risk reduction action. In both countries there is evidence that insurance can play a significant role in encouraging anticipatory FRM, but this remains underutilized. Effective collaboration between insurers and government should not be seen as a cost, but as an investment to secure future insurability through flood resilience.}, language = {en} } @article{VogelOzturkRiemeretal.2017, author = {Vogel, Kristin and Ozturk, Ugur and Riemer, Adrian and Laudan, Jonas and Sieg, Tobias and Wendi, Dadiyorto and Agarwal, Ankit and Roezer, Viktor and Korup, Oliver and Thieken, Annegret}, title = {Die Sturzflut von Braunsbach am 29. Mai 2016 - Entstehung, Ablauf und Sch{\"a}den eines „Jahrhundertereignisses"}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {61}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {3}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2017,3_2}, pages = {163 -- 175}, year = {2017}, abstract = {Am Abend des 29. Mai 2016 wurde der Ort Braunsbach im Landkreis Schw{\"a}bisch-Hall (Baden-W{\"u}rttemberg) von einer Sturzflut getroffen, bei der mehrere H{\"a}user stark besch{\"a}digt oder zerst{\"o}rt wurden. Die Sturzflut war eine der Unwetterfolgen, die im Fr{\"u}hsommer 2016 vom Tiefdruckgebiet Elvira ausgel{\"o}st wurden. Der vorliegende Bericht ist der zweite Teil einer Doppelver{\"o}ffentlichung, welche die Ergebnisse zur Untersuchung des Sturzflutereignisses im Rahmen des DFG-Graduiertenkollegs "Naturgefahren und Risiken in einer sich ver{\"a}ndernden Welt" (NatRiskChange, GRK 2043/1) der Universit{\"a}t Potsdam pr{\"a}sentiert. W{\"a}hrend Teil 1 die meteorologischen und hydrologischen Ereignisse analysiert, fokussiert Teil 2 auf die geomorphologischen Prozesse und die verursachten Geb{\"a}udesch{\"a}den. Dazu wurden Ursprung und Ausmaß des w{\"a}hrend des Sturzflutereignisses mobilisierten und in den Ort getragenen Materials untersucht. Des Weiteren wurden zu 96 betroffenen Geb{\"a}uden Daten zum Schadensgrad sowie Prozess- und Geb{\"a}udecharakteristika aufgenommen und ausgewertet. Die Untersuchungen zeigen, dass bei der Betrachtung von Hochwassergef{\"a}hrdung die Ber{\"u}cksichtigung von Sturzfluten und ihrer speziellen Charakteristika, wie hoher Feststofftransport und sprunghaftes Verhalten insbesondere in bebautem Gel{\"a}nde, wesentlich ist, um effektive Schutzmaßnahmen ergreifen zu k{\"o}nnen.}, language = {de} } @article{KocThieken2017, author = {Koc, Gamze and Thieken, Annegret}, title = {The relevance of flood hazards and impacts in Turkey}, series = {Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards}, volume = {91}, journal = {Natural hazards : journal of the International Society for the Prevention and Mitigation of Natural Hazards}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0921-030X}, doi = {10.1007/s11069-017-3134-6}, pages = {375 -- 408}, year = {2017}, abstract = {Turkey has been severely affected by many natural hazards, in particular earthquakes and floods. Especially over the last two decades, these natural hazards have caused enormous human and economic damage. Although there is a large body of literature on earthquake hazards and risks in Turkey, comparatively little is known about flood hazards and risks. Therefore, this study aims to investigate the severity of flooding in comparison with other natural hazards in Turkey and to analyse the flood patterns by providing an overview of the temporal and spatial distribution of flood losses. These will act as a metric for the societal and economic impacts of flood hazards in Turkey. For this purpose, Turkey Disaster Database (TABB) was used for the years 1960-2014. As input for more detailed event analyses, the most severe flood events in Turkey for the same time interval will also be retrieved. Sufficiency of the TABB database to achieve the main aim of the study in terms of data quality and accuracy was also discussed. The TABB database was analysed and reviewed through comparison, mainly with the Emergency Events Database (EM-DAT), the Global Active Archive of Large Flood Events-Dartmouth Flood Observatory database, news archives and the scientific literature, with a focus on listing the most severe flood event. The comparative review of these data sources reveals big mismatches in the flood data, i.e. the reported number of events, number of affected people and economic loss all differ dramatically. Owing to the fact that the TABB is the only disaster loss database for Turkey, it is important to explore the reasons for the mismatches between TABB and the other sources with regard to aspects of accuracy and data quality. Therefore, biases and fallacies in the TABB loss data are also discussed. The comparative TABB database analyses show that large mismatches between global and national databases can occur. Current global and national databases for monitoring losses from national hazards suffer from a number of limitations, which in turn could lead to misinterpretations of the loss data. Since loss data collection is gaining more and more attention, e.g. in the Sendai Framework for Disaster Risk Reduction 2015-2030, this study offers a framework for developing guidelines for the Turkey Disaster Database (TABB), implications on how to standardize national loss databases and implement across the other hazard events in Turkey.}, language = {en} } @article{Thieken2017, author = {Thieken, Annegret}, title = {Contributions of flood insurance toeEnhance resilience-findings from Germany}, series = {Urban Disaster Resilience and Security}, journal = {Urban Disaster Resilience and Security}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-68606-6}, issn = {2365-757X}, doi = {10.1007/978-3-319-68606-6_9}, pages = {129 -- 144}, year = {2017}, abstract = {In 2002, a severe flood caused financial losses of EUR 11.6 billion in Germany and triggered many changes in flood risk management. This chapter focuses on flood insurance, which is a voluntary supplementary insurance in Germany: it is explored how flood insurance has contributed to enhance resilience of flood-prone residents. The analyses are based on empirical data collected by post-event surveys in the federal states of Saxony and Bavaria and refer to the three pillars upon which the concept of flood resilience usually builds in the natural hazards context: recovery, adaptive capacity and resistance. Overall, the penetration of flood insurance has increased since 2002 and there is strong empirical evidence that losses of insured residents are more often and better compensated than those of uninsured despite the provision of governmental financial disaster assistance after big floods. This facilitation of recovery is, however, not the only contribution to flood resilience. Insured residents tend to invest more in further flood mitigation measures at their properties than uninsured. Obviously, flood insurance is embedded in a complex safety strategy of property owners that needs more investigation in order to be addressed more effectively in risk communication and integrated risk management strategies.}, language = {en} } @misc{RoezerMuellerBubecketal.2017, author = {R{\"o}zer, Viktor and M{\"u}ller, Meike and Bubeck, Philip and Kienzler, Sarah and Thieken, Annegret and Pech, Ina and Schr{\"o}ter, Kai and Buchholz, Oliver and Kreibich, Heidi}, title = {Coping with pluvial floods by private households}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400465}, pages = {24}, year = {2017}, abstract = {Pluvial floods have caused severe damage to urban areas in recent years. With a projected increase in extreme precipitation as well as an ongoing urbanization, pluvial flood damage is expected to increase in the future. Therefore, further insights, especially on the adverse consequences of pluvial floods and their mitigation, are needed. To gain more knowledge, empirical damage data from three different pluvial flood events in Germany were collected through computer-aided telephone interviews. Pluvial flood awareness as well as flood experience were found to be low before the respective flood events. The level of private precaution increased considerably after all events, but is mainly focused on measures that are easy to implement. Lower inundation depths, smaller potential losses as compared with fluvial floods, as well as the fact that pluvial flooding may occur everywhere, are expected to cause a shift in damage mitigation from precaution to emergency response. However, an effective implementation of emergency measures was constrained by a low dissemination of early warnings in the study areas. Further improvements of early warning systems including dissemination as well as a rise in pluvial flood preparedness are important to reduce future pluvial flood damage.}, language = {en} } @misc{KellermannBubeckKundelaetal.2017, author = {Kellermann, Patric and Bubeck, Philip and Kundela, G{\"u}nther and Dosio, Alessandro and Thieken, Annegret}, title = {Frequency analysis of critical meteorological conditions in a changing climate}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400505}, pages = {19}, year = {2017}, abstract = {Meteorological extreme events have great potential for damaging railway infrastructure and posing risks to the safety of train passengers. In the future, climate change will presumably have serious implications on meteorological hazards in the Alpine region. Hence, attaining insights on future frequencies of meteorological extremes with relevance for the railway operation in Austria is required in the context of a comprehensive and sustainable natural hazard management plan of the railway operator. In this study, possible impacts of climate change on the frequencies of so-called critical meteorological conditions (CMCs) between the periods 1961-1990 and 2011-2040 are analyzed. Thresholds for such CMCs have been defined by the railway operator and used in its weather monitoring and early warning system. First, the seasonal climate change signals for air temperature and precipitation in Austria are described on the basis of an ensemble of high-resolution Regional Climate Model (RCM) simulations for Europe. Subsequently, the RCM-ensemble was used to investigate changes in the frequency of CMCs. Finally, the sensitivity of results is analyzed with varying threshold values for the CMCs. Results give robust indications for an all-season air temperature rise, but show no clear tendency in average precipitation. The frequency analyses reveal an increase in intense rainfall events and heat waves, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of CMCs are rather sensitive to changes of thresholds. It thus emphasizes the importance to carefully define, validate, andif neededto adapt the thresholds that are used in the weather monitoring and warning system of the railway operator. For this, continuous and standardized documentation of damaging events and near-misses is a pre-requisite.}, language = {en} } @inproceedings{LopezTarazonBronstertThiekenetal.2017, author = {L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Bronstert, Axel and Thieken, Annegret and Petrow, Theresia}, title = {International symposium on the effects of global change on floods, fluvial geomorphology and related hazards in mountainous rivers}, series = {Book of Abstracts}, booktitle = {Book of Abstracts}, editor = {L{\´o}pez-Taraz{\´o}n, Jos{\´e} Andr{\´e}s and Bronstert, Axel and Thieken, Annegret and Petrow, Theresia}, organization = {Universit{\"a}t Potsdam}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396922}, pages = {104}, year = {2017}, abstract = {Both Alpine and Mediterranean areas are considered sensitive to so-called global change, considered as the combination of climate and land use changes. All panels on climate evolution predict future scenarios of increasing frequency and magnitude of floods which are likely to lead to huge geomorphic adjustments of river channels so major metamorphosis of fluvial systems is expected as a result of global change. Such pressures are likely to give rise to major ecological and economic changes and challenges that governments need to address as a matter of priority. Changes in river flow regimes associated with global change are therefore ushering in a new era, where there is a critical need to evaluate hydro-geomorphological hazards from headwaters to lowland areas (flooding can be not just a problem related to being under the water). A key question is how our understanding of these hazards associated with global change can be improved; improvement has to come from integrated research which includes the climatological and physical conditions that could influence the hydrology and sediment generation and hence the conveyance of water and sediments (including the river's capacity, i.e. amount of sediment, and competence, i.e. channel deformation) and the vulnerabilities and economic repercussions of changing hydrological hazards (including the evaluation of the hydro-geomorphological risks too). Within this framework, the purpose of this international symposium is to bring together researchers from several disciplines as hydrology, fluvial geomorphology, hydraulic engineering, environmental science, geography, economy (and any other related discipline) to discuss the effects of global change over the river system in relation with floods. The symposium is organized by means of invited talks given by prominent experts, oral lectures, poster sessions and discussion sessions for each individual topic; it will try to improve our understanding of how rivers are likely to evolve as a result of global change and hence address the associated hazards of that fluvial environmental change concerning flooding. Four main topics are going to be addressed: - Modelling global change (i.e. climate and land-use) at relevant spatial (regional, local) and temporal (from the long-term to the single-event) scales. - Measuring and modelling river floods from the hydrological, sediment transport (both suspended and bedload) and channel morphology points of view at different spatial (from the catchment to the reach) and temporal (from the long-term to the single-event) scales. - Evaluation and assessment of current and future river flooding hazards and risks in a global change perspective. - Catchment management to face river floods in a changing world. We are very pleased to welcome you to Potsdam. We hope you will enjoy your participation at the International Symposium on the Effects of Global Change on Floods, Fluvial Geomorphology and Related Hazards in Mountainous Rivers and have an exciting and profitable experience. Finally, we would like to thank all speakers, participants, supporters, and sponsors for their contributions that for sure will make of this event a very remarkable and fruitful meeting. We acknowledge the valuable support of the European Commission (Marie Curie Intra-European Fellowship, Project ''Floodhazards'', PIEF-GA-2013-622468, Seventh EU Framework Programme) and the Deutschen Forschungsgemeinschaft (Research Training Group "Natural Hazards and Risks in a Changing World" (NatRiskChange; GRK 2043/1) as the symposium would not have been possible without their help. Without your cooperation, this symposium would not be either possible or successful.}, language = {en} } @article{KreibichDiBaldassarreVorogushynetal.2017, author = {Kreibich, Heidi and Di Baldassarre, Giuliano and Vorogushyn, Sergiy and Aerts, Jeroen C. J. H. and Apel, Heiko and Aronica, Giuseppe T. and Arnbjerg-Nielsen, Karsten and Bouwer, Laurens M. and Bubeck, Philip and Caloiero, Tommaso and Chinh, Do T. and Cortes, Maria and Gain, Animesh K. and Giampa, Vincenzo and Kuhlicke, Christian and Kundzewicz, Zbigniew W. and Llasat, Maria Carmen and Mard, Johanna and Matczak, Piotr and Mazzoleni, Maurizio and Molinari, Daniela and Dung, Nguyen V. and Petrucci, Olga and Schr{\"o}ter, Kai and Slager, Kymo and Thieken, Annegret and Ward, Philip J. and Merz, Bruno}, title = {Adaptation to flood risk}, series = {Earth's Future}, volume = {5}, journal = {Earth's Future}, publisher = {Wiley}, address = {Hoboken}, issn = {2328-4277}, doi = {10.1002/2017EF000606}, pages = {953 -- 965}, year = {2017}, abstract = {As flood impacts are increasing in large parts of the world, understanding the primary drivers of changes in risk is essential for effective adaptation. To gain more knowledge on the basis of empirical case studies, we analyze eight paired floods, that is, consecutive flood events that occurred in the same region, with the second flood causing significantly lower damage. These success stories of risk reduction were selected across different socioeconomic and hydro-climatic contexts. The potential of societies to adapt is uncovered by describing triggered societal changes, as well as formal measures and spontaneous processes that reduced flood risk. This novel approach has the potential to build the basis for an international data collection and analysis effort to better understand and attribute changes in risk due to hydrological extremes in the framework of the IAHSs Panta Rhei initiative. Across all case studies, we find that lower damage caused by the second event was mainly due to significant reductions in vulnerability, for example, via raised risk awareness, preparedness, and improvements of organizational emergency management. Thus, vulnerability reduction plays an essential role for successful adaptation. Our work shows that there is a high potential to adapt, but there remains the challenge to stimulate measures that reduce vulnerability and risk in periods in which extreme events do not occur.}, language = {en} } @article{VogelWeiseSchroeteretal.2018, author = {Vogel, Kristin and Weise, Laura and Schr{\"o}ter, Kai and Thieken, Annegret}, title = {Identifying Driving Factors in Flood-Damaging Processes Using Graphical Models}, series = {Water resources research}, volume = {54}, journal = {Water resources research}, number = {11}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2018WR022858}, pages = {8864 -- 8889}, year = {2018}, abstract = {Flood damage estimation is a core task in flood risk assessments and requires reliable flood loss models. Identifying the driving factors of flood loss at residential buildings and gaining insight into their relations is important to improve our understanding of flood damage processes. For that purpose, we learn probabilistic graphical models, which capture and illustrate (in-)dependencies between the considered variables. The models are learned based on postevent surveys with flood-affected residents after six flood events, which occurred in Germany between 2002 and 2013. Besides the sustained building damage, the survey data contain information about flooding parameters, early warning and emergency measures, property-level mitigation measures and preparedness, socioeconomic characteristics of the household, and building characteristics. The analysis considers the entire data set with a total of 4,468 cases as well as subsets of the data set partitioned into single flood events and flood types: river floods, levee breaches, surface water flooding, and groundwater floods, to reveal differences in the damaging processes. The learned networks suggest that the flood loss ratio of residential buildings is directly influenced by hydrological and hydraulic aspects as well as by building characteristics and property-level mitigation measures. The study demonstrates also that for different flood events and process types the building damage is influenced by varying factors. This suggests that flood damage models need to be capable of reproducing these differences for spatial and temporal model transfers.}, language = {en} } @article{BubeckBotzenLaudanetal.2018, author = {Bubeck, Philip and Botzen, W. J. Wouter and Laudan, Jonas and Aerts, Jeroen C. J. H. and Thieken, Annegret}, title = {Insights into flood-coping appraisals of protection motivation theory}, series = {Risk analysis}, volume = {38}, journal = {Risk analysis}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0272-4332}, doi = {10.1111/risa.12938}, pages = {1239 -- 1257}, year = {2018}, abstract = {Protection motivation theory (PMT) has become a popular theory to explain the risk-reducing behavior of residents against natural hazards. PMT captures the two main cognitive processes that individuals undergo when faced with a threat, namely, threat appraisal and coping appraisal. The latter describes the evaluation of possible response measures that may reduce or avert the perceived threat. Although the coping appraisal component of PMT was found to be a better predictor of protective intentions and behavior, little is known about the factors that influence individuals' coping appraisals of natural hazards. More insight into flood-coping appraisals of PMT, therefore, are needed to better understand the decision-making process of individuals and to develop effective risk communication strategies. This study presents the results of two surveys among more than 1,600 flood-prone households in Germany and France. Five hypotheses were tested using multivariate statistics regarding factors related to flood-coping appraisals, which were derived from the PMT framework, related literature, and the literature on social vulnerability. We found that socioeconomic characteristics alone are not sufficient to explain flood-coping appraisals. Particularly, observational learning from the social environment, such as friends and neighbors, is positively related to flood-coping appraisals. This suggests that social norms and networks play an important role in flood-preparedness decisions. Providing risk and coping information can also have a positive effect. Given the strong positive influence of the social environment on flood-coping appraisals, future research should investigate how risk communication can be enhanced by making use of the observed social norms and network effects.}, language = {en} }