@article{GarcinJungingerMelnicketal.2009, author = {Garcin, Yannick and Junginger, Annett and Melnick, Daniel and Olago, Daniel O. and Strecker, Manfred and Trauth, Martin H.}, title = {Late Pleistocene-Holocene rise and collapse of the Lake Suguta, northern Kenya Rift}, doi = {10.1016/j.quascirev.2008.12.006}, year = {2009}, language = {en} } @article{GarcinSchwabGleixneretal.2012, author = {Garcin, Yannick and Schwab, Valerie F. and Gleixner, Gerd and Kahmen, Ansgar and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Sachse, Dirk}, title = {Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology insights from a calibration transect across Cameroon}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {79}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, number = {4}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2011.11.039}, pages = {106 -- 126}, year = {2012}, abstract = {Hydrogen isotope values (delta D) of sedimentary aquatic and terrestrial lipid biomarkers, originating from algae, bacteria, and leaf wax, have been used to record isotopic properties of ancient source water (i.e., precipitation and/or lake water) in several mid-and high-latitude lacustrine environments. In the tropics, however, where both processes associated with isotope fractionation in the hydrologic system and vegetation strongly differ from those at higher latitudes, calibration studies for this proxy are not yet available. To close this gap of knowledge, we sampled surface sediments from 11 lakes in Cameroon to identify those hydro-climatological processes and physiological factors that determine the hydrogen isotopic composition of aquatic and terrestrial lipid biomarkers. Here we present a robust framework for the application of compound-specific hydrogen isotopes in tropical Africa. Our results show that the delta D values of the aquatic lipid biomarker n-C(17) alkane were not correlated with the delta D values of lake water. Carbon isotope measurements indicate that the n-C(17) alkane was derived from multiple source organisms that used different hydrogen pools for biosynthesis. We demonstrate that the delta D values of the n-C(29) alkane were correlated with the delta D values of surface water (i.e., river water and groundwater), which, on large spatial scales, reflect the isotopic composition of mean annual precipitation. Such a relationship has been observed at higher latitudes, supporting the robustness of the leaf-wax lipid delta D proxy on a hemispheric spatial scale. In contrast, the delta D values of the n-C(31) alkane did not show such a relationship but instead were correlated with the evaporative lake water delta D values. This result suggests distinct water sources for both leaf-wax lipids, most likely originating from two different groups of plants. These new findings have important implications for the interpretation of long-chain n-alkane delta D records from ancient lake sediments. In particular, a robust interpretation of palaeohydrological data requires knowledge of the vegetation in the catchment area as different plants may utilise different water sources. Our results also suggest that the combination of carbon and hydrogen isotopes does help to differentiate between the metabolic pathway and/or growth form of organisms and therefore, the source of hydrogen used during lipid biosynthesis.}, language = {en} } @article{GarcinMelnickStreckeretal.2012, author = {Garcin, Yannick and Melnick, Daniel and Strecker, Manfred and Olago, Daniel and Tiercelin, Jean-Jacques}, title = {East African mid-Holocene wet-dry transition recorded in palaeo-shorelines of Lake Turkana, northern Kenya Rift}, series = {Earth \& planetary science letters}, volume = {331}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.03.016}, pages = {322 -- 334}, year = {2012}, abstract = {The 'wet' early to mid-Holocene of tropical Africa, with its enhanced monsoon, ended with an abrupt shift toward drier conditions and was ultimately replaced by a drier climate that has persisted until the present day. The forcing mechanisms, the timing, and the spatial extent of this major climatic transition are not well understood and remain the subject of ongoing research. We have used a detailed palaeo-shoreline record from Lake Turkana (Kenya) to decipher and characterise this marked climatic transition in East Africa. We present a high-precision survey of well-preserved palaeo-shorelines, new radiocarbon ages from shoreline deposits, and oxygen-isotope measurements on freshwater mollusk shells to elucidate the Holocene moisture history from former lake water-levels in this climatically sensitive region. In combination with previously published data our study shows that during the early Holocene the water-level in Lake Turkana was high and the lake overflowed temporarily into the White Nile drainage system. During the mid-Holocene (similar to 5270 +/- 300 cal. yr BP), however, the lake water-level fell by similar to 50 m, coeval with major episodes of aridity on the African continent. A comparison between palaeo-hydrological and archaeological data from the Turkana Basin suggests that the mid-Holocene climatic transition was associated with fundamental changes in prehistoric cultures, highlighting the significance of natural climate variability and associated periods of protracted drought as major environmental stress factors affecting human occupation in the East African Rift System. (}, language = {en} } @article{OzsayinCinerRojayetal.2013, author = {Ozsayin, Erman and Ciner, T. Attila and Rojay, F. Bora and Dirik, R. Kadir and Melnick, Daniel and Fernandez-Blanco, David and Bertotti, Giovanni and Schildgen, Taylor F. and Garcin, Yannick and Strecker, Manfred and Sudo, Masafumi}, title = {Plio-Quaternary extensional tectonics of the Central Anatolian Plateau a case study from the Tuz Golu Basin, Turkey}, series = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, volume = {22}, journal = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, number = {5}, publisher = {T{\"u}bitak}, address = {Ankara}, issn = {1300-0985}, doi = {10.3906/yer-1210-5}, pages = {691 -- 714}, year = {2013}, abstract = {The Tuz Golu Basin is the largest sedimentary depression located at the center of the Central Anatolian Plateau, an extensive, low-relief region with elevations of ca. 1 km located between the Pontide and Tauride mountains. Presently, the basin morphology and sedimentation processes are mainly controlled by the extensional Tuz Golu Fault Zone in the east and the transtensional Inonu-Eskisehir Fault System in the west. The purpose of this study is to contribute to the understanding of the Plio-Quaternary deformation history and to refine the timing of the latest extensional phase of the Tuz Golu Basin. Field observations, kinematic analyses, interpretations of seismic reflection lines, and Ar-40/Ar-39 dating of a key ignimbrite layer suggest that a regional phase of NNW-SSE to NE-SW contraction ended by 6.81 +/- 0.24 Ma and was followed by N-S to NE-SW extension during the Pliocene-Quaternary periods. Based on sedimentological and chronostratigraphic markers, the average vertical displacement rates over the past 5 or 3 Ma with respect to the central part of Tuz Golu Lake are 0.03 to 0.05 mm/year for the fault system at the western flank of the basin and 0.08 to 0.13 mm/year at the eastern flank. Paleo-shorelines of the Tuz Golu Lake, vestiges of higher lake levels related to Quaternary climate change, are important strain markers and were formed during Last Glacial Maximum conditions as indicated by a radiocarbon age of 21.8 +/- 0.4 ka BP obtained from a stromatolitic crust. Geomorphic observations and deformed lacustrine shorelines suggest that the main strand of the Tuz Golu Fault Zone straddling the foothills of the Sereflikochisar-Aksaray range has not been active during the Holocene. Instead, deformation appears to have migrated towards the interior of the basin along an offshore fault that runs immediately west of Sereflikochisar Peninsula. This basinward migration of deformation is probably associated with various processes acting at the lithospheric scale, such as plateau uplift and/or microplate extrusion.}, language = {en} } @article{GarcinSchefussSchwabetal.2014, author = {Garcin, Yannick and Schefuss, Enno and Schwab, Valerie F. and Garreta, Vincent and Gleixner, Gerd and Vincens, Annie and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Sachse, Dirk}, title = {Reconstructing C-3 and C-4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {142}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2014.07.004}, pages = {482 -- 500}, year = {2014}, abstract = {Trees and shrubs in tropical Africa use the C-3 cycle as a carbon fixation pathway during photosynthesis, while grasses and sedges mostly use the C-4 cycle. Leaf-wax lipids from sedimentary archives such as the long-chain n-alkanes (e.g., n-C-27 to n-C-33) inherit carbon isotope ratios that are representative of the carbon fixation pathway. Therefore, n-alkane delta C-13 values are often used to reconstruct past C-3/C-4 composition of vegetation, assuming that the relative proportions of C-3 and C-4 leaf waxes reflect the relative proportions of C-3 and C-4 plants. We have compared the delta C-13 values of n-alkanes from modern C-3 and C-4 plants with previously published values from recent lake sediments and provide a framework for estimating the fractional contribution (areal-based) of C-3 vegetation cover (f(C3)) represented by these sedimentary archives. Samples were collected in Cameroon, across a latitudinal transect that accommodates a wide range of climate zones and vegetation types, as reflected in the progressive northward replacement of C-3-dominated rain forest by C-4-dominated savanna. The C-3 plants analysed were characterised by substantially higher abundances of n-C-29 alkanes and by substantially lower abundances of n-C-33 alkanes than the C-4 plants. Furthermore, the sedimentary delta C-13 values of n-C-29 and n-C-31 alkanes from recent lake sediments in Cameroon (-37.4\%) to 26.5\%) were generally within the range of delta C-13 values for C-3 plants, even when from sites where C-4 plants dominated the catchment vegetation. In such cases simple linear mixing models fail to accurately reconstruct the relative proportions of C-3 and C-4 vegetation cover when using the delta C-13 values of sedimentary n-alkanes, overestimating the proportion of C-3 vegetation, likely as a consequence of the differences in plant wax production, preservation, transport, and/or deposition between C-3 and C-4 plants. We therefore tested a set of non-linear binary mixing models using delta C-13 values from both C-3 and C-4 vegetation as end-members. The non-linear models included a sigmoid function (sine-squared) that describes small variations in the f(C3) values as the minimum and maximum delta C-13 values are approached, and a hyperbolic function that takes into account the differences between C-3 and C-4 plants discussed above. Model fitting and the estimation of uncertainties were completed using the Monte Carlo algorithm and can be improved by future data addition. Models that provided the best fit with the observed delta C-13 values of sedimentary n-alkanes were either hyperbolic functions or a combination of hyperbolic and sine-squared functions. Such non-linear models may be used to convert delta C-13 measurements on sedimentary n-alkanes directly into reconstructions of C-3 vegetation cover. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchwabGarcinSachseetal.2015, author = {Schwab, Valerie F. and Garcin, Yannick and Sachse, Dirk and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Gleixner, Gerd}, title = {Dinosterol delta D values in stratified tropical lakes (Cameroon) are affected by eutrophication}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {88}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2015.08.003}, pages = {35 -- 49}, year = {2015}, abstract = {In freshwater settings, dinosterol (4 alpha,23,24-trimethyl-5 alpha-cholest-22E-en-3 beta-ol) is produced primarily by dinoflagellates, which encompass various species including autotrophs, mixotrophs and heterotrophs. Due to its source specificity and occurrence in lake and marine sediments, its presence and hydrogen isotopic composition (delta D) should be valuable proxies for paleohydrological reconstruction. However, because the purity required for hydrogen isotope measurements is difficult to achieve using standard wet chemical purification methods, their potential as a paleohydrological proxy is rarely exploited. In this study, we tested delta D values of dinosterol in both particulate organic matter (POM) and sediments of stratified tropical freshwater lakes (from Cameroon) as a paleohydrological proxy, the lakes being characterized by variable degrees of eutrophication. In POM and sediment samples, the delta D values of dinosterol correlated with lake water delta D values, confirming a first order influence of source water delta D values. However, we observed that sedimentary dinosterol was D enriched from ca. 19 to 54\% compared with POM dinosterol. The enrichment correlated with lake water column conditions, mainly the redox potential at the oxic-anoxic interface (E-h OAI). The observations suggest that paleohydrologic reconstruction from delta D values of dinosterol in the sediments of stratified tropical lakes ought to be sensitive to the depositional environment, in addition to lake water delta D values, with more positive dinosterol delta values potentially reflecting increasing lake eutrophication. Furthermore, in lake sediments, the concentration of partially reduced vs. non-reduced C-34 botryococcenes, stanols vs. stenols, and bacterial (diploptene, diplopterol and beta beta-bishomohopanol) vs. planktonic/terrestrial lipids (cholesterol, campesterol and dinosterol) correlated with Eh OAI. We suggest using such molecular proxies for lake redox conditions in combination with dinosterol delta D values to evaluate the effect of lake trophic status on sedimentary dinosterol delta D values, as a basis for accurately reconstructing tropical lake water delta D values. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchwabGarcinSachseetal.2015, author = {Schwab, Valerie F. and Garcin, Yannick and Sachse, Dirk and Todou, Gilbert and Sene, Olivier and Onana, Jean-Michel and Achoundong, Gaston and Gleixner, Gerd}, title = {Effect of aridity on delta C-13 and delta D values of C-3 plant- and C-4 graminoid-derived leaf wax lipids from soils along an environmental gradient in Cameroon (Western Central Africa)}, series = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, volume = {78}, journal = {Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0146-6380}, doi = {10.1016/j.orggeochem.2014.09.007}, pages = {99 -- 109}, year = {2015}, abstract = {The observation that the hydrogen isotope composition (delta D) of leaf wax lipids is determined mainly by precipitation delta D values, has resulted in the application of these biomarkers to reconstruct paleoclimate from geological records. However, because the delta D values of leaf wax lipids are additionally affected by vegetation type and ecosystem evapotranspiration, paleoclimatic reconstruction remains at best semi-quantitative. Here, we used published results for the carbon isotope composition (delta C-13) of n-alkanes in common plants along a latitudinal gradient in C-3/C-4 vegetation and relative humidity in Cameroon and demonstrated that pentacyclic triterpene methyl ethers (PTMEs) and n-C-29 and n-C-31 in the same soil, derived mainly from C-4 graminoids (e.g. grass) and C-3 plants (e.g. trees and shrubs), respectively. We found that the delta D values of soil n-C-27, n-C29 and n-C-31, and PTMEs correlated significantly with surface water delta D values, supporting previous observations that leaf wax lipid delta D values are an effective proxy for reconstructing precipitation delta D values even if plant types changed significantly. The apparent fractionation (epsilon(app)) between leaf wax lipid and precipitation delta D values remained relatively constant for C-3-derived long chain n-alkanes, whereas eapp of C-4-derived PTMEs decreased by 20 parts per thousand along the latitudinal gradient encompassing a relative humidity range from 80\% to 45\%. Our results indicate that PTME delta D values derived from C-4 graminoids may be a more reliable paleo-ecohydrological proxy for ecosystem evapotranspiration within tropical and sub-tropical Africa than n-alkane delta D values, the latter being a better proxy for surface water delta D values. We suggest that vegetation changes associated with different plant water sources and/or difference in timing of leaf wax synthesis between C-3 trees of the transitional class and C-3 shrubs of the savanna resulted in a D depletion in soil long chain n-alkanes, thereby counteracting the effect of evapotranspiration D enrichment along the gradient. In contrast, evaporative D enrichment of leaf and soil water was significant enough to be recorded in the delta D values of PTMEs derived from C-4 graminoids, likely because PTMEs recorded the hydrogen isotopic composition of the same vegetation type.}, language = {en} } @misc{vanderLubbeKrauseNehringJungingeretal.2017, author = {van der Lubbe, H. J. L. and Krause-Nehring, J. and Junginger, A. and Garcin, Yannick and Joordens, J. C. A. and Davies, G. R. and Beck, C. and Feibel, C. S. and Johnson, T. C. and Vonhof, H. B.}, title = {Gradual or abrupt? Changes in water source of Lake Turkana (Kenya) during the African Humid Period inferred from Sr isotope ratios}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {174}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2017.08.010}, pages = {1 -- 12}, year = {2017}, language = {en} } @article{MelnickYildirimHillemannetal.2017, author = {Melnick, Daniel and Yildirim, Cengiz and Hillemann, Christian and Garcin, Yannick and Ciner, T. Attila and Perez-Gussinye, Marta and Strecker, Manfred}, title = {Slip along the Sultanhani Fault in Central Anatolia from deformed Pleistocene shorelines of palaeo-lake Konya and implications for seismic hazards in low-strain regions}, series = {Geophysical journal international}, volume = {209}, journal = {Geophysical journal international}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggx074}, pages = {1431 -- 1454}, year = {2017}, abstract = {Central Anatolia is a low-relief, high-elevation region where decadal-scale deformation rates estimated from space geodesy suggest low strain rates within a stiff microplate. However, numerous Quaternary faults have been mapped within this low-strain region and estimating their slip rate and seismic potential is important for hazard assessments in an area of increasing infrastructural development. Here we focus on the Sultanhani Fault (SF), which constitutes an integral part of the Eskisehir-Cihanbeyli Fault System, and use deformed maximum highstand shorelines of palaeo-lake Konya to estimate tectonic slip rates at millennial scale. Some of these shorelines were previously interpreted as fault scarps, but we provide conclusive evidence for their erosional origin. We found that shoreline-angle elevations estimated from differential GPS profiles record vertical displacements of 10.2 m across the SF. New radiocarbon ages of lacustrine molluscs suggest 22.4 m of relative lake-level fall between 22.1 +/- 0.3 and 21.7 +/- 0.4 cal. kaBP, constraining the timing of abrupt abandonment of the highstand shoreline. Models of lithospheric rebound associated with regressions of the Tuz Golu and Konya palaeolakes predict only similar to 1 m of regional-scale uplift across the Konya Basin. Dislocation models of displaced shorelines suggest fault-slip rates of 1.5 and 1.8 mm yr(-1) for planar and listric fault geometries, respectively, providing reasonable results for the latter. We found fault scarps in the Nasuhpinar mudflat that likely represent the most recent ground-breaking rupture of the SF, with an average vertical displacement of 1.2 +/- 0.5 m estimated from 54 topographic profiles, equivalent to a M similar to 6.5-6.9 earthquake based on empirical scaling laws. If such events were characteristic during the ultimate 21 ka, a relatively short recurrence time of similar to 800-900 yr would be needed to account for the millennial slip rate. Alternatively, the fault scarp at Nasuhpinar might represent a larger earthquake requiring more frequent smaller events to account for the millennial rate. The relatively fast slip rate of the SF over the past 21 ka is unlikely to have persisted over longer timescales and might reflect spatiotemporal variations in deformation rates within kinematically-linked fault systems within Central Anatolia, or a transient perturbation to the local stress field or fault strength. Such perturbation might have been related to climatically controlled changes in surface and near-surface loads and by interactions among the different tectonic processes that have been proposed to drive the overall slow uplift and associated extension in the Central Anatolian Plateau.}, language = {en} } @misc{GarcinAcostaMelnicketal.2017, author = {Garcin, Yannick and Acosta, Veronica Torres and Melnick, Daniel and Guillemoteau, Julien and Willenbring, Jane and Strecker, Manfred}, title = {Short-lived increase in erosion during the African Humid Period: Evidence from the northern Kenya Rift (vol 759, pg 58, 2017)}, series = {Earth \& planetary science letters}, volume = {474}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2017.07.027}, pages = {528 -- 528}, year = {2017}, language = {en} }