@article{TiedemannPaulusHavensteinetal.2011, author = {Tiedemann, Ralph and Paulus, Kirsten B. and Havenstein, Katja and Thorstensen, Sverrir and Petersen, Aevar and Lyngs, Peter and Milinkovitch, Michel C.}, title = {Alien eggs in duck nests brood parasitism or a help from Grandma?}, series = {Molecular ecology}, volume = {20}, journal = {Molecular ecology}, number = {15}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/j.1365-294X.2011.05158.x}, pages = {3237 -- 3250}, year = {2011}, abstract = {Intraspecific brood parasitism (IBP) is a remarkable phenomenon by which parasitic females can increase their reproductive output by laying eggs in conspecific females' nests in addition to incubating eggs in their own nest. Kin selection could explain the tolerance, or even the selective advantage, of IBP, but different models of IBP based on game theory yield contradicting predictions. Our analyses of seven polymorphic autosomal microsatellites in two eider duck colonies indicate that relatedness between host and parasitizing females is significantly higher than the background relatedness within the colony. This result is unlikely to be a by-product of relatives nesting in close vicinity, as nest distance and genetic identity are not correlated. For eider females that had been ring-marked during the decades prior to our study, our analyses indicate that (i) the average age of parasitized females is higher than the age of nonparasitized females, (ii) the percentage of nests with alien eggs increases with the age of nesting females, (iii) the level of IBP increases with the host females' age, and (iv) the number of own eggs in the nest of parasitized females significantly decreases with age. IBP may allow those older females unable to produce as many eggs as they can incubate to gain indirect fitness without impairing their direct fitness: genetically related females specialize in their energy allocation, with young females producing more eggs than they can incubate and entrusting these to their older relatives. Intraspecific brood parasitism in ducks may constitute cooperation among generations of closely related females.}, language = {en} } @phdthesis{SammlerKetmaierHavensteinetal.2012, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, doi = {10.1186/1471-2148-12-203}, year = {2012}, language = {en} } @article{SammlerHavensteinTiedemann2012, author = {Sammler, Svenja and Havenstein, Katja and Tiedemann, Ralph}, title = {Fourteen new microsatellite markers for the Visayan tarictic hornbill (Penelopides panini) and their cross-species applicability among other endangered Philippine hornbills}, series = {Conservation genetics resources}, volume = {4}, journal = {Conservation genetics resources}, number = {2}, publisher = {Springer}, address = {Dordrecht}, issn = {1877-7252}, doi = {10.1007/s12686-011-9567-4}, pages = {435 -- 438}, year = {2012}, abstract = {Fourteen microsatellite markers were isolated and characterized for the endangered Visayan tarictic hornbill (Penelopides panini, Aves: Bucerotidae). In an analysis of 76 individuals, the number of alleles per locus varied from one to 12. Expected and observed heterozygosity ranged from 0.00 to 0.87 and from 0.00 to 0.89, respectively. All primers also amplify microsatellite loci in Luzon tarictic hornbill (Penelopides manillae), Mindanao tarictic hornbill (Penelopides affinis), the critically endangered Walden's hornbill (Aceros waldeni) and the near-threatened writhed hornbill (Aceros leucocephalus). Two loci which are monomorphic in P. panini were found polymorphic in at least one of the other species. These 14 new microsatellite markers specifically developed for two genera of Philippine hornbills, in combination with those already available for the hornbill genera Buceros and Bucorvus, comprise a reasonable number of loci to genetically analyse wild and captive populations of these and probably other related, often endangered hornbills.}, language = {en} } @article{SammlerKetmaierHavensteinetal.2012, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, series = {BMC evolutionary biology}, volume = {12}, journal = {BMC evolutionary biology}, number = {25}, publisher = {BioMed Central}, address = {London}, issn = {1471-2148}, doi = {10.1186/1471-2148-12-203}, pages = {14}, year = {2012}, abstract = {Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential.}, language = {en} } @misc{SammlerKetmaierHavensteinetal.2013, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Tiedemann, Ralph}, title = {Intraspecific rearrangement of duplicated mitochondrial control regions in the luzon tarictic hornbill penelopides manillae (Aves: Bucerotidae)}, series = {Journal of molecular evolution}, volume = {77}, journal = {Journal of molecular evolution}, number = {5-6}, publisher = {Springer}, address = {New York}, issn = {0022-2844}, doi = {10.1007/s00239-013-9591-y}, pages = {199 -- 205}, year = {2013}, abstract = {Philippine hornbills of the genera Aceros and Penelopides (Bucerotidae) are known to possess a large tandemly duplicated fragment in their mitochondrial genome, whose paralogous parts largely evolve in concert. In the present study, we surveyed the two distinguishable duplicated control regions in several individuals of the Luzon Tarictic Hornbill Penelopides manillae, compare their characteristics within and across individuals, and report on an intraspecific mitochondrial gene rearrangement found in one single specimen, i.e., an interchange between the two control regions. To our knowledge, this is the first observation of two distinct mitochondrial genome rearrangements within a bird species. We briefly discuss a possible evolutionary mechanism responsible for this pattern, and highlight potential implications for the application of control region sequences as a marker in population genetics and phylogeography.}, language = {en} } @article{TiedemannSchneiderHavensteinetal.2014, author = {Tiedemann, Ralph and Schneider, Anja R. R. and Havenstein, Katja and Blanck, Torsten and Meier, Elmar and Raffel, Martina and Zwartepoorte, Henk and Plath, Martin}, title = {New microsatellite markers allow high-resolution taxon delimitation in critically endangered Asian box turtles, genus Cuora}, series = {Salamandra : German journal of herpetology}, volume = {50}, journal = {Salamandra : German journal of herpetology}, number = {3}, publisher = {Deutsche Gesellschaft f{\"u}r Herpetologie und Terrarienkunde}, address = {Darmstadt}, issn = {0036-3375}, pages = {139 -- 146}, year = {2014}, abstract = {We isolated and characterized 16 new di- and tetranudeotide microsatellite markers for the critically endangered Asian box turtle genus Cuora, focusing on the "Cuora trifasciata" species complex. The new markers were then used to analyse genetic variability and divergence amongst five described species within this complex, namely C. aurocapitata (n = 18), C. cyclornata (n = 31), C. pani (n = 6), C. trifasciata (n = 58), and C. zhoui (n = 7). Our results support the view that all five species represent valid taxa. Within two species (C. trifasciata and C. cyclornata), two distinct morphotypes were corroborated by microsatellite divergence. For three individuals, morphologically identified as being of hybrid origin, the hybrid status was confirmed by our genetic analysis. Our results confirm the controversial species (Cuora aurocapitata, C. cyclornata) and subspecies/morphotypes (C. cyclornata meieri, C. trifasciata cf. trifasciata) to be genetically distinct, which has critical implications for conservation strategies.}, language = {en} } @article{SchwarteWegnerHavensteinetal.2015, author = {Schwarte, Sandra and Wegner, Fanny and Havenstein, Katja and Groth, Detlef and Steup, Martin and Tiedemann, Ralph}, title = {Sequence variation, differential expression, and divergent evolution in starch-related genes among accessions of Arabidopsis thaliana}, series = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, volume = {87}, journal = {Plant molecular biology : an international journal of fundamental research and genetic engineering}, number = {4-5}, publisher = {Springer}, address = {Dordrecht}, issn = {0167-4412}, doi = {10.1007/s11103-015-0293-2}, pages = {489 -- 519}, year = {2015}, abstract = {Transitory starch metabolism is a nonlinear and highly regulated process. It originated very early in the evolution of chloroplast-containing cells and is largely based on a mosaic of genes derived from either the eukaryotic host cell or the prokaryotic endosymbiont. Initially located in the cytoplasm, starch metabolism was rewired into plastids in Chloroplastida. Relocation was accompanied by gene duplications that occurred in most starch-related gene families and resulted in subfunctionalization of the respective gene products. Starch-related isozymes were then evolutionary conserved by constraints such as internal starch structure, posttranslational protein import into plastids and interactions with other starch-related proteins. 25 starch-related genes in 26 accessions of Arabidopsis thaliana were sequenced to assess intraspecific diversity, phylogenetic relationships, and modes of selection. Furthermore, sequences derived from additional 80 accessions that are publicly available were analyzed. Diversity varies significantly among the starch-related genes. Starch synthases and phosphorylases exhibit highest nucleotide diversities, while pyrophosphatases and debranching enzymes are most conserved. The gene trees are most compatible with a scenario of extensive recombination, perhaps in a Pleistocene refugium. Most genes are under purifying selection, but disruptive selection was inferred for a few genes/substitutiones. To study transcript levels, leaves were harvested throughout the light period. By quantifying the transcript levels and by analyzing the sequence of the respective accessions, we were able to estimate whether transcript levels are mainly determined by genetic (i.e., accession dependent) or physiological (i.e., time dependent) parameters. We also identified polymorphic sites that putatively affect pattern or the level of transcripts.}, language = {en} } @article{MarroneHavensteinTiedemannetal.2016, author = {Marrone, F. and Havenstein, Katja and Tiedemann, Ralph and Ketmaier, V.}, title = {Identification and characterization of five polymorphic microsatellite loci in the freshwater copepod Hemidiaptomus gurneyi (Copepoda: Calanoida: Diaptomidae)}, series = {The Italian journal of zoology}, volume = {83}, journal = {The Italian journal of zoology}, publisher = {Springer}, address = {Abingdon}, issn = {1125-0003}, doi = {10.1080/11250003.2015.1126363}, pages = {146 -- 150}, year = {2016}, abstract = {Hemidiaptomus diaptomid copepods are known to be excellent biological indicators for the highly biodiverse crustacean communities inhabiting Mediterranean temporary ponds (MTPs), an endangered inland water habitat whose conservation is considered a priority according to the "Habitat Directive" of the European Union. This study reports on the characterization of five polymorphic microsatellite loci in Hemidiaptomus gurneyi, to be used as markers for fine-scale studies on the population genetic structure and metapopulation dynamics of a typical and obligate MTP dweller. The five selected loci proved to be polymorphic in the species, with three to five polymorphic loci per studied population. Overall, mean heterozygosity scored for all loci and populations was lower than that reported for the few other diaptomid species for which microsatellite loci have been to date described; this is possibly due to the intrinsically fragmented and isolated peculiar habitat inhabited by the species. Furthermore, the presence of indels within the flanking regions of selected loci was scored. This study, albeit confirming the technical difficulties in finding proper microsatellite markers in copepods, provides for the first time a set of useful polymorphic microsatellite loci for a Hemidiaptomus species, thus allowing the realization of fine-scale phylogeographic and population genetics studies of this flagship crustacean taxon for MTPs.}, language = {en} } @article{ValenteIlleraHavensteinetal.2017, author = {Valente, Luis and Illera, Juan Carlos and Havenstein, Katja and Pallien, Tamara and Etienne, Rampal S. and Tiedemann, Ralph}, title = {Equilibrium Bird Species Diversity in Atlantic Islands}, series = {Current biology}, volume = {27}, journal = {Current biology}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2017.04.053}, pages = {1660 -- +}, year = {2017}, language = {en} } @misc{SammlerKetmaierHavensteinetal.2017, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401108}, pages = {14}, year = {2017}, abstract = {Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential.}, language = {en} }