@article{HenkelJoulainCarminatietal.2000, author = {Henkel, Carsten and Joulain, Karl and Carminati, R{\´e}mi and Greffet, Jean-Jacques}, title = {Spatial coherence of thermal near fields}, year = {2000}, abstract = {We analyze the spatial coherence of the electromagnetic field emitted by a half-space at temperature T close to the interface. An asymptotic analysis allows to identify three different contributions to the cross-spectral density tensor in the near-field regime. It is shown that the coherence length can be either much larger or much shorter than the wavelength depending on the dominant contribution.}, language = {en} } @article{GreffetCarminatiJoulainetal.2001, author = {Greffet, Jean-Jacques and Carminati, R{\´e}mi and Joulain, Karl and Mulet, J. P. and Henkel, Carsten}, title = {Coherence properties of thermal near fields : implications for nanometer-scale radiative transfer}, year = {2001}, abstract = {With the recent development of local (optical and thermal) probe microscopy and the advent of nanotechnology, it seems necessary to revisit the old subject of coherence properies of thermal sources of light. Concerning temporal coherence, we show that thermal sources may produce quasi-monochromatic near fields. In light of this result, the possibility of perfoming near-field solid-state spectroscopy and of designing near-field infrared sources is discussed. The problem of radiative transfer between two thermal sources held at subwavelength distance is studied. The radiative flux may be enhanced by several orders of magnitude due to the excitation of resonant surface waves, and this may occur at particular frequencies. Finally, we study the spatial coherence of thermal sources and the substantial influence of the near field. Surface waves may induce long-range spatial correlation, on a scale much larger than the wavelength. Conversely, quasi-static contributions, as well as skin-layer currents, induce arbitary small correlations. With the recent development of local (optical and thermal) probe microscopy and the advent of nanotechnology, it seems necessary to revisit the old subject of coherence of thermal fields.}, language = {en} } @article{HenkelJoulainMuletetal.2002, author = {Henkel, Carsten and Joulain, Karl and Mulet, J. P. and Greffet, Jean-Jacques}, title = {Radiation forces on small particles in thermal near fields}, year = {2002}, abstract = {We study the optical forces due to the radiation of a thermal source. Our model consists of a particle modelled by a dipole above a half-space at temperature T. The fluctuating fields are computed using the Lifshitz model. We find two contributions to the force: a repulsive "wind" component and a dispersive force mainly due to the contribution of thermally excited surface waves. It is found that for SIC material, the latter is repulsive in the very near field. The usual van der Waals force is larger by a factor of approximately ten for submicron size particles.}, language = {en} } @article{GreffetCarminatiJoulainetal.2003, author = {Greffet, Jean-Jacques and Carminati, R{\´e}mi and Joulain, Karl and Mulet, J. P. and Henkel, Carsten and Mainguy, S.}, title = {Coherent spontaneous emission of light due to surface waves}, issn = {0303-4216}, year = {2003}, language = {en} } @article{HenkelJoulainMuletetal.2004, author = {Henkel, Carsten and Joulain, Karl and Mulet, J. P. and Greffet, Jean-Jacques}, title = {Coupled surface polaritons and the Casimir force}, year = {2004}, abstract = {The Casimir force between metallic plates made of realistic materials is evaluated for distances in the nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due to surface resonances (plasmon polaritons or phonon polaritons) that are coupled across the vacuum gap. We demonstrate that the Casimir force originates from the attraction (repulsion) due to the corresponding symmetric (antisymmetric) eigenmodes, respectively. This picture is used to derive a simple analytical estimate of the Casimir force at short distances. We recover the result known for Drude metals without absorption and compute the correction for weakly absorbing materials}, language = {en} } @article{CarminatiGreffetHenkeletal.2006, author = {Carminati, R{\´e}mi and Greffet, Jean-Jacques and Henkel, Carsten and Vigoureux, Jean-Marie}, title = {Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle}, issn = {0030-4018}, doi = {10.1016/j.optcom.2005.12.009}, year = {2006}, abstract = {We study the spontaneous emission of a single emitter close to a metallic nanoparticle, with the aim to clarify the distance dependence of the radiative and non-radiative decay rates. We derive analytical formulas based on a dipole- dipole model, and show that the nonradiative decay rate follows a R-6 dependence at short distance, where R is the distance between the emitter and the center of the nanoparticle, as in Forster's energy transfer. The distance dependence of the radiative decay rate is more subtle. It is chiefly dominated by a R-3 dependence, a R-6 dependence being visible at plasmon resonance. The latter is a consequence of radiative damping in the effective dipole polarizability of the nanoparticle. The different distance behavior of the radiative and non-radiative decay rates implies that the apparent quantum yield always vanishes at short distance. Moreover, non-radiative decay is strongly enhanced when the emitter radiates at the plasmon-resonance frequency of the nanoparticle.}, language = {en} } @article{GreffetHenkel2006, author = {Greffet, Jean-Jacques and Henkel, Carsten}, title = {Rayonnement thermique coh{\´e}rent}, issn = {0290-0041}, year = {2006}, abstract = {Le rayonnement {\´e}lectromagn{\´e}tique produit par un corps {\`a} temp{\´e}rature T est g{\´e}n{\´e}ralement consid{\´e}r{\´e} comme l'exemple type du rayonnement incoh{\´e}rent que l'on oppose au rayonnement laser. L'un est quasi isotrope tandis que l'autre est tr{\`e}s directionnel, l'un a un large spectre tandis que l'autre est quasi-monochromatique. Aussi surprenant que cela puisse para{\^i}tre, le rayonnement thermique de bon nombre de corps est coh{\´e}rent lorsque l'on se place {\`a} une distance inf{\´e}rieure {\`a} la longueur d'onde de la surface {\´e}mettrice. Nous verrons que ces effets peuvent {\^e}tre pr{\´e}dits {\`a} l'aide d'une approche {\´e}lectromagn{\´e}tique du rayonnement thermique. Plusieurs exp{\´e}riences r{\´e}centes ont confirm{\´e} ces propri{\´e}t{\´e}s inattendues.}, language = {fr} } @article{JoulainHenkelGreffet2006, author = {Joulain, Karl and Henkel, Carsten and Greffet, Jean-Jacques}, title = {Influence of the dependence in temperature of the optical properties of materials on the Casimir force}, series = {Journal de physique IV}, volume = {135}, journal = {Journal de physique IV}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1155-4339}, doi = {10.1051/jp4:2006135021}, pages = {113 -- 114}, year = {2006}, abstract = {Nous {\´e}valuons la force de Casimir entre deux surfaces planes m{\´e}talliques constitu{\´e}es d'argent. Nous prenons, pour effectuer cette {\´e}valuation, des propri{\´e}t{\´e}s optiques de l'argent {\`a} diff{\´e}rentes temp{\´e}ratures [1]. Nous montrons que cette d{\´e}pendance en temp{\´e}rature modifie la force de Casimir (de 0.2\%) y compris {\`a} des distances inf{\´e}rieures {\`a} la longueur d'onde thermique.}, language = {fr} } @article{GreffetHenkel2007, author = {Greffet, Jean-Jacques and Henkel, Carsten}, title = {Coherent thermal radiation}, issn = {0010-7514}, year = {2007}, abstract = {The radiation emitted by a heated body is generally quoted as a typical example of incoherent radiation, in distinction to laser radiation. One is nearly isotropic, the other highly directional; one is spectrally broad, the other quasi-monochromatic. It may come as a surprise that the thermal radiation of a large number of substances is coherent, both in space and time, when it is observed at a distance from the body that is shorter than the wavelength. This behaviour can be understood within an electromagnetic approach to thermal emission. Several recent experiments have confirmed these unexpected properties.}, language = {en} }