@article{ReinickeReesEspeeletal.2017, author = {Reinicke, Stefan and Rees, Huw C. and Espeel, Pieter and Vanparijs, Nane and Bisterfeld, Carolin and Dick, Markus and Rosencrantz, Ruben R. and Brezesinski, Gerald and de Geest, Bruno G. and Du Prez, Filip E. and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander}, title = {Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir-Schaefer Technique}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b13632}, pages = {8317 -- 8326}, year = {2017}, abstract = {A synthetic protocol for the fabrication of ultrathin polymeric films containing the enzyme 2-deoxy-D-ribose-5-phosphate aldolase from Escherichia coli (DERA(EC)) is presented. Ultrathin enzymatically active films are useful for applications in which only small quantities of active material are needed and at the same time quick response and contact times without diffusion limitation are wanted. We show how DERA as an exemplary enzyme can be immobilized in a thin polymer layer at the air-water interface and transferred to a suitable support by the Langmuir-Schaefer technique under full conservation of enzymatic activity. The polymer in use is a poly(N-isopropylacrylamide-co-N-2-thiolactone acrylamide) (P(NIPAAm-co-TlaAm)) statistical copolymer in which the thiolactone units serve a multitude of purposes including hydrophobization of the polymer, covalent binding of the enzyme and the support and finally cross-linking of the polymer matrix. The application of this type of polymer keeps the whole approach simple as additional cocomponents such as cross-linkers are avoided.}, language = {en} } @article{ZhangBisterfeldBramskietal.2017, author = {Zhang, Shuhao and Bisterfeld, Carolin and Bramski, Julia and Vanparijs, Nane and De Geest, Bruno G. and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander and Reinicke, Stefan}, title = {Biocatalytically Active Thin Films via Self-Assembly of 2-Deoxy-D-ribose-5-phosphate Aldolase-Poly(N-isopropylacrylamide) Conjugates}, series = {Bioconjugate chemistry}, volume = {29}, journal = {Bioconjugate chemistry}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1043-1802}, doi = {10.1021/acs.bioconjchem.7b00645}, pages = {104 -- 116}, year = {2017}, abstract = {2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a biocatalyst that is capable of converting acetaldehyde and a second aldehyde as acceptor into enantiomerically pure mono- and diyhydroxyaldehydes, which are important structural motifs in a number of pharmaceutically active compounds. However, substrate as well as product inhibition requires a more-sophisticated process design for the synthesis of these motifs. One way to do so is to the couple aldehyde conversion with transport processes, which, in turn, would require an immobilization of the enzyme within a thin film that can be deposited on a membrane support. Consequently, we developed a fabrication process for such films that is based on the formation of DERA-poly(N-isopropylacrylamide) conjugates that are subsequently allowed to self-assemble at an air-water interface to yield the respective film. In this contribution, we discuss the conjugation conditions, investigate the interfacial properties of the conjugates, and, finally, demonstrate a successful film formation under the preservation of enzymatic activity.}, language = {en} } @article{ZhangBramskiTutusetal.2019, author = {Zhang, Shuhao and Bramski, Julia and Tutus, Murat and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander and Reinicke, Stefan}, title = {A Biocatalytically Active Membrane Obtained from Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase on a Porous Support}, series = {ACS applied materials \& interfaces}, volume = {11}, journal = {ACS applied materials \& interfaces}, number = {37}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.9b12029}, pages = {34441 -- 34453}, year = {2019}, abstract = {Aldol reactions play an important role in organic synthesis, as they belong to the class of highly beneficial C-C-linking reactions. Aldol-type reactions can be efficiently and stereoselectively catalyzed by the enzyme 2-deoxy-D-ribose-5-phosphate aldolase (DERA) to gain key intermediates for pharmaceuticals such as atorvastatin. The immobilization of DERA would open the opportunity for a continuous operation mode which gives access to an efficient, large-scale production of respective organic intermediates. In this contribution, we synthesize and utilize DERA/polymer conjugates for the generation and fixation of a DERA bearing thin film on a polymeric membrane support. The conjugation strongly increases the tolerance of the enzyme toward the industrial relevant substrate acetaldehyde while UV-cross-linkable groups along the conjugated polymer chains provide the opportunity for covalent binding to the support. First, we provide a thorough characterization of the conjugates followed by immobilization tests on representative, nonporous cycloolefinic copolymer supports. Finally, immobilization on the target supports constituted of polyacrylonitrile (PAN) membranes is performed, and the resulting enzymatically active membranes are implemented in a simple membrane module setup for the first assessment of biocatalytic performance in the continuous operation mode using the combination hexanal/acetaldehyde as the substrate.}, language = {en} } @article{ReinickeFischerBramskietal.2019, author = {Reinicke, Stefan and Fischer, Thilo and Bramski, Julia and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander}, title = {Biocatalytically active microgels by precipitation polymerization of N-isopropyl acrylamide in the presence of an enzyme}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, number = {49}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c9ra04000e}, pages = {28377 -- 28386}, year = {2019}, abstract = {We present a novel protocol for the synthesis of enzymatically active microgels. The protocol is based on the precipitation polymerization of N-isopropylacrylamide (NIPAm) in the presence of an enzyme and a protein binding comonomer. A basic investigation on the influence of different reaction parameters such as monomer concentration and reaction temperature on the microgel size and size distribution is performed and immobilization yields are determined. Microgels exhibiting hydrodynamic diameters between 100 nm and 1 mu m and narrow size distribution could be synthesized while about 31-44\% of the enzyme present in the initial reaction mixture can be immobilized. Successful immobilization including a verification of enzymatic activity of the microgels is achieved for glucose oxidase (GOx) and 2-deoxy-d-ribose-5-phosphate aldolase (DERA). The thermoresponsive properties of the microgels are assessed and discussed in the light of activity evolution with temperature. The positive correlation of enzymatic activity with temperature for the GOx containing microgel originates from a direct interaction of the enzyme with the PNIPAm based polymer matrix whose magnitude is highly influenced by temperature.}, language = {en} } @article{RottkeHeyneReinicke2020, author = {Rottke, Falko O. and Heyne, Marie-Victoria and Reinicke, Stefan}, title = {Switching enzyme activity by a temperature responsive inhibitor modified polymer}, series = {Chemical communications}, volume = {56}, journal = {Chemical communications}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-7345}, doi = {10.1039/c9cc09385k}, pages = {2459 -- 2462}, year = {2020}, abstract = {A thermoresponsive NIPAAm-based polymer is combined with the selective acetylcholinesterase inhibitor tacrine in order to create a strict in sense on/off switch for enzymatic activity. This polymer-inhibitor conjugate inhibits AChE at room temperature and enables reactivation of AChE by heating above the cloud point of the conjugate.}, language = {en} } @article{GaebertRosenstinglLinsleretal.2020, author = {G{\"a}bert, Chris and Rosenstingl, Tobias and Linsler, Dominic and Dienwiebel, Martin and Reinicke, Stefan}, title = {Programming viscosity in silicone oils}, series = {ACS applied polymer materials}, volume = {2}, journal = {ACS applied polymer materials}, number = {12}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2637-6105}, doi = {10.1021/acsapm.0c00794}, pages = {5460 -- 5468}, year = {2020}, abstract = {Programmable oils feature tunable viscosity and therefore possess potential for technical improvements and innovative solutions in many lubricated applications. Herein, we describe the first assessment of the variability of rheological properties of light-programmable 9-anthracene ester-terminated polydimethylsiloxanes (PDMS-As), including implications that arise with UV-light as an external trigger. We applied a modified rheometer setup that enables the monitoring of dynamic moduli during exposure to UV-light. The reversible dimerization of anthracene esters is used to either link PDMS chains by UV-A radiation (365 nm) or cleave chains by UV-C radiation (254 nm) or at elevated temperatures (>130 degrees C). Thermal cleavage fully restores the initial material properties, while the photochemical cleavage of dimers occurs only to a limited extent. Prolonged UV radiation causes material damage and in turn reduces the range of programmable rheological properties. The incomplete cleavage contributes to a gradual buildup of viscosity over a course of several switching cycles, which we suggest to result from chain length-dependent reaction kinetics. Material property gradients induced during radiation due to attenuation of the light beam upon its passing through the oil layer have to be considered, emphasizing the need for proper mixing protocols during the programming step. The material in focus shows integrated photorheology and is suggested to improve the performance of silicone oils in friction systems.}, language = {en} } @article{AkarsuGrobeNowaczyketal.2021, author = {Akarsu, Pinar and Grobe, Richard and Nowaczyk, Julius and Hartlieb, Matthias and Reinicke, Stefan and B{\"o}ker, Alexander and Sperling, Marcel and Reifarth, Martin}, title = {Solid-phase microcontact printing for precise patterning of rough surfaces}, series = {ACS applied polymer materials}, volume = {3}, journal = {ACS applied polymer materials}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {2637-6105}, doi = {10.1021/acsapm.1c00024}, pages = {2420 -- 2431}, year = {2021}, abstract = {We present a microcontact printing (mu CP) routine suitable to introduce defined (sub-) microscale patterns on surface substrates exhibiting a high capillary activity and receptive to a silane-based chemistry. This is achieved by transferring functional trivalent alkoxysilanes, such as (3-aminopropyl)-triethoxysilane (APTES) as a low-molecular weight ink via reversible covalent attachment to polymer brushes grafted from elastomeric polydimethylsiloxane (PDMS) stamps. The brushes consist of poly{N-[tris(hydroxymethyl)-methyl]acrylamide} (PTrisAAm) synthesized by reversible addition-fragmentation chain-transfer (RAFT)-polymerization and used for immobilization of the alkoxysilane-based ink by substituting the alkoxy moieties with polymer-bound hydroxyl groups. Upon physical contact of the silane-carrying polymers with surfaces, the conjugated silane transfers to the substrate, thus completely suppressing ink-flow and, in turn, maximizing printing accuracy even for otherwise not addressable substrate topographies. We provide a concisely conducted investigation on polymer brush formation using atomic force microscopy (AFM) and ellipsometry as well as ink immobilization utilizing two-dimensional proton nuclear Overhauser enhancement spectroscopy (H-1-H-1-NOESY-NMR). We analyze the mu CP process by printing onto Si-wafers and show how even distinctively rough surfaces can be addressed, which otherwise represent particularly challenging substrates.}, language = {en} } @article{CheaSchadeReinickeetal.2022, author = {Chea, Sany and Schade, Kristin and Reinicke, Stefan and Bleul, Regina and Rosencrantz, Ruben R.}, title = {Synthesis and self-assembly of cytidine- and guanosine-based copolymers}, series = {Polymer Chemistry}, volume = {13}, journal = {Polymer Chemistry}, number = {35}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/d2py00615d}, pages = {5058 -- 5067}, year = {2022}, abstract = {The base pairing property and the "melting" behavior of oligonucleotides can take advantage to develop new smart thermoresponsive and programmable materials. Complementary cytidine- (C) and guanosine- (G) based monomers were blockcopolymerized using RAFT polymerization technique with poly-(N-(2-hydroxypropyl) methacrylamide) (pHPMA) as the hydrophilic macro chain transfer agent (macro-CTA). C-C, G-G and C-G hydrogen bond interactions of blockcopolymers with respectively C and G moieties have been investigated using SEM, DLS and UV-Vis. Mixing and heating both complementary copolymers resulted in reforming new aggregates. Due to the ribose moiety of the isolated nucleoside-bearing blockcopolymers, the polarity is increased for better solubility. Self-assembly investigations of these bioinspired compounds are the crucial basis for the development of potential future drug delivery systems.}, language = {en} }