@phdthesis{Loew2008, author = {Loew, Noya}, title = {Meerrettich Peroxidase : Modifikationen und Anwendungen in Biosensoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18430}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Biosensoren werden oft f{\"u}r die Messung einzelner Substanzen in komplexen Medien verwendet, wie z.B. bei der Blutzuckerbestimmung. Sie bestehen aus einem physikochemischen Sensor, dem Transduktionselement, und einer darauf immobilisierten biologischen Komponente, dem Erkennungselement. In dieser Arbeit wurde als Transduktionselement eine Elektrode und als Biokomponente das Enzym „Meerrettich Peroxidase" (engl. horseradish peroxidase, HRP) verwendet. Solche HRP-Elektroden werden f{\"u}r die Messung von Wasserstoffperoxid (H2O2) eingesetzt. H2O2 wird im K{\"o}rper von weißen Blutk{\"o}rperchen produziert, um Bakterien abzut{\"o}ten, wird teilweise ausgeatmet und kann in kondensierter Atemluft nachgewiesen werden. Da viele weiße Blutk{\"o}rperchen bei einer Chemotherapie abget{\"o}tet und dadurch die Patienten anf{\"a}lliger f{\"u}r Infektionen werden, muss ihre Anzahl regelm{\"a}ßig {\"u}berwacht werden. Dazu wird zurzeit Blut abgenommen. Im ersten Teil dieser Arbeit wurde untersucht, ob eine {\"U}berwachung der Anzahl an weißen Blutk{\"o}rperchen ohne Blutabnahme durch eine H2O2-Messung erfolgen kann. Ein direkter Zusammenhang zwischen der ausgeatmeten H2O2-Menge und der Zahl der weißen Blutk{\"o}rperchen konnte dabei nicht festgestellt werden. F{\"u}r empfindliche H2O2-Messungen mit einer HRP-Elektrode ist ein schneller Austausch von Elektronen zwischen der Elektrode und dem Enzym notwendig. Eine Vorraussetzung daf{\"u}r ist eine kurze Distanz zwischen dem aktiven Zentrum des Enzyms und der Elektrodenoberfl{\"a}che. Um einen kurzen Abstand zu erreichen wurden im zweiten Teil dieser Arbeit verschiedene por{\"o}se graphit{\"a}hnliche Materialien aus pyrolysierten Kobalt-Porphyrinen f{\"u}r die Elektrodenherstellung verwendet. Dabei stellte sich heraus, dass eines der untersuchten Materialien, welches Poren von etwa der Gr{\"o}ße eines Enzyms hat, Elektronen etwa 200mal schneller mit dem Enzym austauscht als festes Graphit. Die HRP selbst enth{\"a}lt in seinem aktiven Zentrum ein Eisen-Protoporphyrin, also ein aus vier Ringen bestehendes flaches Molek{\"u}l mit einem Eisenatom im Zentrum. Reagiert die HRP mit H2O2, so entzieht es dem Peroxid zwei Elektronen. Eines dieser Elektronen wird am Eisen, das andere im Ringsystem zwischengespeichert, bevor sie an ein anderes Molek{\"u}l oder an die Elektrode weitergegeben werden. Im letzten Teil dieser Arbeit wurde das Eisen durch Osmium ausgetauscht. Das so ver{\"a}nderte Enzym entzieht Peroxiden nur noch ein Elektron. Dadurch reagiert es zwar langsamer mit Wasserstoffperoxid, daf{\"u}r aber schneller mit tert-Butylhydroperoxid, einem organischen Vertreter der Peroxid-Familie.}, language = {de} } @phdthesis{Knoche2022, author = {Knoche, Lisa}, title = {Untersuchung von Transformationsprodukten ausgew{\"a}hlter Tierarzneimittel generiert durch Elektrochemie, Mikrosomal Assay, Hydrolyse und Photolyse}, pages = {163, III}, year = {2022}, abstract = {The knowledge of transformation pathways and transformation products of veterinary drugs is important for health, food and environmental matters. Residues, consisting of original veterinary drug and transformation products, are found in food products of animal origin as well as the environment (e.g., soil or surface water). Several transformation processes can alter the original veterinary drug, ranging from biotransformation in living organism to environmental degradation processes like photolysis, hydrolysis, or microbial processes. In this thesis, four veterinary drugs were investigated, three ionophore antibiotics Monensin, Salinomycin and Lasalocid and the macrocyclic lactone Moxidectin. Ionophore antibiotics are mainly used to cure and prevent coccidiosis in poultry especially prophylactic in broiler farming. Moxidectin is an antiparasitic drug that is used for the treatment of internal and external parasites in food-producing and companion animals. The main objective of this work is to employ different laboratory approaches to generate and identify transformation products. The identification was conducted using high-resolution mass spectrometry (HRMS). A major focus was placed on the application of electrochemistry for simulation of transformation processes. The electrochemical reactor - equipped with a three-electrode flow-through cell - enabled the oxidation or reduction by applying a potential. The transformation products derived were analyzed by online coupling of the electrochemical reactor and a HRMS and offline by liquid chromatography (LC) combined with HRMS. The main modification reaction of the identified transformation products differed for each investigated veterinary drug. Monensin showed decarboxylation and demethylation as the main modification reactions, for Salinomycin mostly decarbonylation occurred and for Lasalocid methylation was prevalent. For Moxidectin, I observed an oxidation (hydroxylation) reaction and adduct formation with solvent. In general, for Salinomycin and Lasalocid, more transient transformation products (online measurement) than stable transformation products (offline measurements) were detected. By contrast, the number of transformation products using online and offline measurements were identical for Monensin and Moxidectin. As a complementary approach, metabolism tests with rat or human liver microsomes were conducted for the ionophore antibiotics. Monensin was investigated by using rat liver microsomes and the transformation products identified were based on decarboxylation and demethylation. Salinomycin and Lasalocid were converted by human and rat liver microsomes. For both substances, more transformation products were found by using human liver microsomes. The transformation products of the rat liver microsome conversion were redundant, and the transformation products were also found at the human liver microsome assay. Oxidation (hydroxylation) was found to be the main modification reaction for both. In addition, a frequent ion exchange between sodium and potassium was identified. The final two experiments were performed for one substance each, whereby the hydrolysis of Monensin and the photolysis of Moxidectin was investigated. The transformation products of the pH-dependent hydrolysis were based on ring-opening and dehydration. Moxidectin formed several transformation products by irradiation with UV-C light and the main modification reactions were isomeric changes, (de-)hydration and changes of the methoxime moiety. In summary, transformation products of the four investigated veterinary drugs were generated by the different laboratory approaches. Most of the transformation products were identified for the first time. The resulting findings provide an improved understanding of clarifying the transformation behavior.}, language = {en} }