@phdthesis{Maltseva2005, author = {Maltseva, Elena}, title = {Model membrane interactions with ions and peptides at the air/water interface}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5670}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated biochemical processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Alteration of peptide structure could be a cause of many diseases. Biological membranes are complex systems, therefore simplified models may be introduced in order to understand processes occurring in nature. The lipid monolayers at the air/water interface are suitable model systems to mimic biological membranes since many parameters can be easily controlled. In the present work the lipid monolayers were used as a model membrane and their interactions with two different peptides B18 and Amyloid beta (1-40) peptide were investigated. B18 is a synthetic peptide that binds to lipid membranes that leads to the membrane fusion. It was demonstrated that it adopts different structures in the aqueous solutions and in the membrane interior. It is unstructured in solutions and forms alpha-helix at the air/water interface or in the membrane bound state. The peptide has affinity to the negatively charged lipids and even can fold into beta-sheet structure in the vicinity of charged membranes at high peptide to lipid ratio. It was elucidated that in the absence of electrostatic interactions B18 does not influence on the lipid structure, whereas it provides partial liquidization of the negatively charged lipids. The understanding of mechanism of the peptide action in model system may help to develop the new type of antimicrobial peptides as well as it can shed light on the general mechanisms of peptide/membrane binding. The other studied peptide - Amyloid beta (1-40) peptide, which is the major component of amyloid plaques found in the brain of patients with Alzheimer's disease. Normally the peptide is soluble and is not toxic. During aging or as a result of the disease it aggregates and shows a pronounced neurotoxicity. The peptide aggregation involves the conformational transition from a random coil or alpha-helix to beta-sheets. Recently it was demonstrated that the membrane can play a crucial role for the peptide aggregation and even more the peptide can cause the change in the cell membranes that leads to a neuron death. In the present studies the structure of the membrane bound Amyloid beta peptide was elucidated. It was found that the peptide adopts the beta-sheet structure at the air/water interface or being adsorbed on lipid monolayers, while it can form alpha-helical structure in the presence of the negatively charged vesicles. The difference between the monolayer system and the bulk system with vesicles is the peptide to lipid ratio. The peptide adopts the helical structure at low peptide to lipid ratio and folds into beta-sheet at high ratio. Apparently, Abeta peptide accumulation in the brain is concentration driven. Increasing concentration leads to a change in the lipid to peptide ratio that induces the beta-sheet formation. The negatively charged lipids can act as seeds in the plaque formation, the peptide accumulates on the membrane and when the peptide to lipid ratio increases it the peptide forms toxic beta-sheet containing aggregates.}, subject = {Lipide}, language = {en} } @phdthesis{Prevot2006, author = {Prevot, Michelle Elizabeth}, title = {Introduction of a thermo-sensitive non-polar species into polyelectrolyte multilayer capsules for drug delivery}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7785}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The layer-by-layer assembly (LBL) of polyelectrolytes has been extensively studied for the preparation of ultrathin films due to the versatility of the build-up process. The control of the permeability of these layers is particularly important as there are potential drug delivery applications. Multilayered polyelectrolyte microcapsules are also of great interest due to their possible use as microcontainers. This work will present two methods that can be used as employable drug delivery systems, both of which can encapsulate an active molecule and tune the release properties of the active species. Poly-(N-isopropyl acrylamide), (PNIPAM) is known to be a thermo-sensitive polymer that has a Lower Critical Solution Temperature (LCST) around 32oC; above this temperature PNIPAM is insoluble in water and collapses. It is also known that with the addition of salt, the LCST decreases. This work shows Differential Scanning Calorimetry (DSC) and Confocal Laser Scanning Microscopy (CLSM) evidence that the LCST of the PNIPAM can be tuned with salt type and concentration. Microcapsules were used to encapsulate this thermo-sensitive polymer, resulting in a reversible and tunable stimuli- responsive system. The encapsulation of the PNIPAM inside of the capsule was proven with Raman spectroscopy, DSC (bulk LCST measurements), AFM (thickness change), SEM (morphology change) and CLSM (in situ LCST measurement inside of the capsules). The exploitation of the capsules as a microcontainer is advantageous not only because of the protection the capsules give to the active molecules, but also because it facilitates easier transport. The second system investigated demonstrates the ability to reduce the permeability of polyelectrolyte multilayer films by the addition of charged wax particles. The incorporation of this hydrophobic coating leads to a reduced water sensitivity particularly after heating, which melts the wax, forming a barrier layer. This conclusion was proven with Neutron Reflectivity by showing the decreased presence of D2O in planar polyelectrolyte films after annealing creating a barrier layer. The permeability of capsules could also be decreased by the addition of a wax layer. This was proved by the increase in recovery time measured by Florescence Recovery After Photobleaching, (FRAP) measurements. In general two advanced methods, potentially suitable for drug delivery systems, have been proposed. In both cases, if biocompatible elements are used to fabricate the capsule wall, these systems provide a stable method of encapsulating active molecules. Stable encapsulation coupled with the ability to tune the wall thickness gives the ability to control the release profile of the molecule of interest.}, subject = {Mikrokapsel}, language = {en} } @phdthesis{Hohberger2006, author = {Hohberger, Horst}, title = {Semiclassical asymptotics for the scattering amplitude in the presence of focal points at infinity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11574}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {We consider scattering in \$\R^n\$, \$n\ge 2\$, described by the Schr\"odinger operator \$P(h)=-h^2\Delta+V\$, where \$V\$ is a short-range potential. With the aid of Maslov theory, we give a geometrical formula for the semiclassical asymptotics as \$h\to 0\$ of the scattering amplitude \$f(\omega_-,\omega_+;\lambda,h)\$ \$\omega_+\neq\omega_-\$) which remains valid in the presence of focal points at infinity (caustics). Crucial for this analysis are precise estimates on the asymptotics of the classical phase trajectories and the relationship between caustics in euclidean phase space and caustics at infinity.}, subject = {Mathematik}, language = {en} } @phdthesis{Ott2006, author = {Ott, Christian David}, title = {Stellar iron core collapse in {3+1} general relativity and the gravitational wave signature of core-collapse supernovae}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-12986}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {I perform and analyse the first ever calculations of rotating stellar iron core collapse in {3+1} general relativity that start out with presupernova models from stellar evolutionary calculations and include a microphysical finite-temperature nuclear equation of state, an approximate scheme for electron capture during collapse and neutrino pressure effects. Based on the results of these calculations, I obtain the to-date most realistic estimates for the gravitational wave signal from collapse, bounce and the early postbounce phase of core collapse supernovae. I supplement my {3+1} GR hydrodynamic simulations with 2D Newtonian neutrino radiation-hydrodynamic supernova calculations focussing on (1) the late postbounce gravitational wave emission owing to convective overturn, anisotropic neutrino emission and protoneutron star pulsations, and (2) on the gravitational wave signature of accretion-induced collapse of white dwarfs to neutron stars.}, language = {en} } @phdthesis{Frankovitch2007, author = {Frankovitch, Christine Marie}, title = {Optical methods for monitoring biological parameters of phototropic microorganisms during cultivation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15403}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Phototropic microalgae have a large potential for producing valuable substances for the feed, food, cosmetics, pigment, bioremediation, and pharmacy industries as well as for biotechnological processes. Today it is estimated that the microalgal aquaculture worldwide production is 5000 tons of dry matter per year (not taking into account processed products) making it an approximately \$1.25 billion U.S. per year industry. In this work, several spectroscopic techniques were utilized for the investigation of microalgae cells. Specifically, photondensity wave spectroscopy was applied as a technique for the on-line observation of the culture. For effective evaluation of the photosynthetic growth processes, fast and non-invasive sensor systems that analyze the relevant biological and technical process parameters are preferred. Traditionally, the biomass in a photobioreactor is quantified with the help of turbidimetry measurements, which require extensive calibration. Another problem frequently encountered when using spectral analysis for investigating solutions is that samples of interest are often undiluted and highly scattering and do not adhere to Beer-Lambert's law. Due to the fluorescence properties of chlorophyll, fluorescence spectroscopy techniques including fluorescence lifetime imaging and single photon counting could be applied to provide images of the cells as well as determine the effects of excitation intensity on the fluorescence lifetime, which is an indicator of the condition of the cell. A photon density wave is a sinusoidally intensity-modulated optical wave stemming from a point-source of light, which propagates through diffuse medium and exhibits amplitude and phase variations. Light propagation though strongly scattering media can be described by the P1 approximation to the Boltzmann transport equation. Photon density wave spectroscopy enables the ability to differentiate between scattered and absorbed light, which is desired so that an independent determination of the reduced scattering and absorption coefficients can be made. The absorption coefficient is related to the pigment content in the cells, and the reduced scattering coefficient can be used to characterize physical and morphological properties of the medium and was here applied for the determination of the average cell size.}, language = {en} } @phdthesis{Wasiolka2007, author = {Wasiolka, Bernd}, title = {The impact of overgrazing on reptile diversity and population dynamics of Pedioplanis l. lineoocellata in the southern Kalahari}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16611}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Die Vegetationskomposition und -struktur, beispielsweise die unterschiedliche Architektur von B{\"a}umen, Str{\"a}uchern, Gr{\"a}sern und Kr{\"a}utern, bietet ein großes Spektrum an Habitaten und Nischen, die wiederum eine hohe Tierdiversit{\"a}t in den Savannensystemen des s{\"u}dlichen Afrikas erm{\"o}glichen. Dieses {\"O}kosystem wurde jedoch {\"u}ber Jahrzehnte weltweit durch intensive anthropogene Landnutzung (z.B. Viehwirtschaft) nachhaltig ver{\"a}ndert. Dabei wurden die Zusammensetzung, Diversit{\"a}t und Struktur der Vegetation stark ver{\"a}ndert. {\"U}berweidung in Savannensystemen f{\"u}hrt zu einer Degradation des Habitates einhergehend mit dem Verlust von perennierenden Gr{\"a}sern und krautiger Vegetation. Dies f{\"u}hrt zu einem Anstieg an vegetationsfreien Bodenfl{\"a}chen. Beides, sowohl der Verlust an perennierenden Gr{\"a}sern und krautiger Vegetation sowie der Anstieg an vegetationsfreien Fl{\"a}chen f{\"u}hrt zu verbesserten Etablierungsbedingungen f{\"u}r Str{\"a}ucher (z.B. Rhigozum trichotomum, Acacia mellifera) und auf lange Sicht zu stark verbuschten Fl{\"a}chen. Die Tierdiversit{\"a}t in Savannen ist hiervon entscheidend beeinflusst. Mit sinkender struktureller Diversit{\"a}t verringert sich auch die Tierdiversit{\"a}t. W{\"a}hrend der Einfluss von {\"U}berweidung auf die Vegetation relativ gut untersucht ist sind Informationen {\"u}ber den Einfluss von {\"U}berweidung auf die Tierdiversit{\"a}t, speziell f{\"u}r Reptilien, eher sp{\"a}rlich vorhanden. Zus{\"a}tzlich ist sehr wenig bekannt zum Einfluss auf die Populationsdynamik (z.B. Verhaltensanpassungen, Raumnutzung, {\"U}berlebensrate, Sterberate) einzelner Reptilienarten. Ziel meiner Doktorarbeit ist es den Einfluss von {\"U}berweidung durch kommerzielle Farmnutzung auf die Reptiliengemeinschaft und auf verschiedene Aspekte der Populationsdynamik der Echse Pedioplanis lineoocellata lineoocellata zu untersuchen. Hinsichtlich bestimmter Naturschutzmaßnahmen ist es einerseits wichtig zu verstehen welchen Auswirkungen {\"U}berweidung auf die gesamte Reptiliengemeinschaft hat. Und zum anderen wie entscheidende Faktoren der Populationsdynamik beeinflusst werden. Beides f{\"u}hrt zu einem besseren Verst{\"a}ndnis der Reaktion von Reptilien auf Habitatdegradation zu erlangen. Die Ergebnisse meiner Doktorarbeit zeigen eindeutig einen negativen Einfluss der {\"U}berweidung und der daraus resultierende Habitatdegradation auf (1) die gesamte Reptiliengemeinschaft und (2) auf einzelne Aspekte der Populationsdynamik von P. lineoocellata. Im Teil 1 wird die signifikante Reduzierung der Reptiliendiversit{\"a}t und Abundanz in degradierten Habitaten beschrieben. Im zweiten Teil wird gezeigt, dass P. lineoocellata das Verhalten an die verschlechterten Lebensbedingungen anpassen kann. Die Art bewegt sich sowohl h{\"a}ufiger als auch {\"u}ber einen l{\"a}ngeren Zeitraum und legt dabei gr{\"o}ßere Distanzen zur{\"u}ck. Zus{\"a}tzlich vergr{\"o}ßerte die Art ihr Revier (home range) (Teil 3). Im abschließenden Teil wird der negative Einfluss von {\"U}berweidung auf die Populationsdynamik von P. lineoocellata beschrieben: In degradierten Habitaten nimmt die Populationsgr{\"o}ße von adulten und juvenilen Echsen ab, die {\"U}berlebens- und Geburtenrate sinken, w{\"a}hren zus{\"a}tzlich das Pr{\"a}dationsrisiko ansteigt. Verantwortlich hierf{\"u}r ist zum einen die ebenfalls reduzierte Nahrungsverf{\"u}gbarkeit (Arthropoden) auf degradierten Fl{\"a}chen. Dies hat zur Folge, dass die Populationsgr{\"o}ße abnimmt und die Fitness der Individuen verringert wird, welches sich durch eine Reduzierung der {\"U}berlebens- und Geburtenrate bemerkbar macht. Und zum anderen ist es die Reduzierung der Vegetationsbedeckung und der R{\"u}ckgang an perennierenden Gr{\"a}sern welche sich negativ auswirken. Als Konsequenz hiervon gehen Nischen und Mikrohabitate verloren und die M{\"o}glichkeiten der Reptilien zur Thermoregulation sind verringert. Des Weiteren hat dieser Verlust an perennierender Grasbedeckung auch ein erh{\"o}htes Pr{\"a}dationsrisikos zur Folge. Zusammenfassend l{\"a}sst sich sagen, dass nicht nur B{\"a}ume und Str{\"a}ucher, wie in anderen Studien gezeigt, eine bedeutende Rolle f{\"u}r die Diversit{\"a}t spielen, sondern auch das perennierende Gras eine wichtige Rolle f{\"u}r die Faunendiversit{\"a}t spielt. Weiterhin zeigte sich, dass Habitatdegradation nicht nur die Population als gesamtes beeinflusst, sondern auch das Verhalten und Populationsparameter einzelner Arten. Des Weiteren ist es Reptilien m{\"o}glich durch Verhaltensflexibilit{\"a}t auf verschlechterte Umweltbedingen zu reagieren.}, language = {en} } @phdthesis{Riewe2008, author = {Riewe, David}, title = {The relevance of adenylate levels and adenylate converting enzymes on metabolism and development of potato (Solanum tuberosum L.) tubers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-27323}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Adenylates are metabolites with essential function in metabolism and signaling in all living organisms. As Cofactors, they enable thermodynamically unfavorable reactions to be catalyzed enzymatically within cells. Outside the cell, adenylates are involved in signalling processes in animals and emerging evidence suggests similar signaling mechanisms in the plants' apoplast. Presumably, apoplastic apyrases are involved in this signaling by hydrolyzing the signal mediating molecules ATP and ADP to AMP. This PhD thesis focused on the role of adenylates on metabolism and development of potato (Solanum tuberosum) by using reverse genetics and biochemical approaches. To study the short and long term effect of cellular ATP and the adenylate energy charge on potato tuber metabolism, an apyrase from Escherichia coli targeted into the amyloplast was expressed inducibly and constitutively. Both approaches led to the identification of adaptations to reduced ATP/energy charge levels on the molecular and developmental level. These comprised a reduction of metabolites and pathway fluxes that require significant amounts of ATP, like amino acid or starch synthesis, and an activation of processes that produce ATP, like respiration and an immense increase in the surface-to-volume ratio. To identify extracellular enzymes involved in adenylate conversion, green fluorescent protein and activity localization studies in potato tissue were carried out. It was found that extracellular ATP is imported into the cell by an apoplastic enzyme complement consisting of apyrase, unspecific phosphatase, adenosine nucleosidase and an adenine transport system. By changing the expression of a potato specific apyrase via transgenic approaches, it was found that this enzyme has strong impact on plant and particular tuber development in potato. Whereas metabolite levels were hardly altered, transcript profiling of tubers with reduced apyrase activity revealed a significant upregulation of genes coding for extensins, which are associated with polar growth. The results are discussed in context of adaptive responses of plants to changes in the adenylate levels and the proposed role of apyrase in apoplastic purinergic signaling and ATP salvaging. In summary, this thesis provides insight into adenylate regulated processes within and outside non-photosynthetic plant cells.}, language = {en} } @phdthesis{Fuerstenau2008, author = {F{\"u}rstenau, Cornelia}, title = {The impact of silvicultural strategies and climate change on carbon sequestration and other forest ecosystem functions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-27657}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Forests are a key resource serving a multitude of functions such as providing income to forest owners, supplying industries with timber, protecting water resources, and maintaining biodiversity. Recently much attention has been given to the role of forests in the global carbon cycle and their management for increased carbon sequestration as a possible mitigation option against climate change. Furthermore, the use of harvested wood can contribute to the reduction of atmospheric carbon through (i) carbon sequestration in wood products, (ii) the substitution of non-wood products with wood products, and (iii) through the use of wood as a biofuel to replace fossil fuels. Forest resource managers are challenged by the task to balance these multiple while simultaneously meeting economic requirements and taking into consideration the demands of stakeholder groups. Additionally, risks and uncertainties with regard to uncontrollable external variables such as climate have to be considered in the decision making process. In this study a scientific stakeholder dialogue with forest-related stakeholder groups in the Federal State of Brandenburg was accomplished. The main results of this dialogue were the definition of major forest functions (carbon sequestration, groundwater recharge, biodiversity, and timber production) and priority setting among them by the stakeholders using the pair-wise comparison technique. The impact of different forest management strategies and climate change scenarios on the main functions of forest ecosystems were evaluated at the Kleinsee management unit in south-east Brandenburg. Forest management strategies were simulated over 100 years using the forest growth model 4C and a wood product model (WPM). A current climate scenario and two climate change scenarios based on global circulation models (GCMs) HadCM2 and ECHAM4 were applied. The climate change scenario positively influenced stand productivity, carbon sequestration, and income. The impact on the other forest functions was small. Furthermore, the overall utility of forest management strategies were compared under the priority settings of stakeholders by a multi-criteria analysis (MCA) method. Significant differences in priority setting and the choice of an adequate management strategy were found for the environmentalists on one side and the more economy-oriented forest managers of public and private owned forests on the other side. From an ecological perspective, a conservation strategy would be preferable under all climate scenarios, but the business as usual management would also fit the expectations under the current climate. In contrast, a forest manager in public-owned forests or a private forest owner would prefer a management strategy with an intermediate thinning intensity and a high share of pine stands to enhance income from timber production while maintaining the other forest functions. The analysis served as an example for the combined application of simulation tools and a MCA method for the evaluation of management strategies under multi-purpose and multi-user settings with changing climatic conditions. Another focus was set on quantifying the overall effect of forest management on carbon sequestration in the forest sector and the wood industry sector plus substitution effects. To achieve this objective, the carbon emission reduction potential of material and energy substitution (Smat and Sen) was estimated based on a literature review. On average, for each tonne of dry wood used in a wood product substituting a non-wood product, 0.71 fewer tonnes of fossil carbon are emitted into to the atmosphere. Based on Smat and Sen, the calculation of the carbon emission reduction through substitution was implemented in the WPM. Carbon sequestration and substitution effects of management strategies were simulated at three local scales using the WPM and the forest growth models 4C (management unit level) or EFISCEN (federal state of Brandenburg and Germany). An investigation was conducted on the influence of uncertainties in the initialisation of the WPM, Smat, and basic conditions of the wood product sector on carbon sequestration. Results showed that carbon sequestration in the wood industry sector plus substitution effects exceeded sequestration in the forest sector. In contrast to the carbon pools in the forest sector, which acted as sink or source, the substitution effects continually reduced carbon emission as long as forests are managed and timber is harvested. The main climate protection function was investigated for energy substitution which accounted for about half of the total carbon sequestration, followed by carbon storage in landfills. In Germany, the absolute annual carbon sequestration in the forest and wood industry sector plus substitution effects was 19.9 Mt C. Over 50 years the wood industry sector contributed 70\% of the total carbon sequestration plus substitution effects.}, language = {en} } @phdthesis{Wattenbach2008, author = {Wattenbach, Martin}, title = {The hydrological effects of changes in forest area and species composition in the federal state of Brandenburg, Germany}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-27394}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {This thesis aims to quantify the human impact on the natural resource water at the landscape scale. The drivers in the federal state of Brandenburg (Germany), the area under investigation, are land-use changes induced by policy decisions at European and federal state level. The water resources of the federal state are particularly sensitive to changes in land-use due to low precipitation rates in the summer combined with sandy soils and high evapotranspiration rates. Key elements in landscape hydrology are forests because of their unique capacity to transport water from the soil to the atmosphere. Given these circumstances, decisions made at any level of administration that may have effects on the forest sector in the state are critical in relation to the water cycle. It is therefore essential to evaluate any decision that may change forest area and structure in such a sensitive region. Thus, as a first step, it was necessary to develop and implement a model able to simulate possible interactions and feedbacks between forested surfaces and the hydrological cycle at the landscape scale. The result is a model for simulating the hydrological properties of forest stands based on a robust computation of the temporal and spatial LAI (leaf area index) dynamics. The approach allows the simulation of all relevant hydrological processes with a low parameter demand. It includes the interception of precipitation and transpiration of forest stands with and without groundwater in the rooting zone. The model also considers phenology, biomass allocation, as well as mortality and simple management practices. It has been implemented as a module in the eco-hydrological model SWIM (Soil and Water Integrated Model). This model has been tested in two pre-studies to verify the applicability of its hydrological process description for the hydrological conditions typical for the state. The newly implemented forest module has been tested for Scots Pine (Pinus sylvestris) and in parts for Common Oak (Quercus robur and Q. petraea) in Brandenburg. For Scots Pine the results demonstrate a good simulation of annual biomass increase and LAI in addition to the satisfactory simulation of litter production. A comparison of the simulated and measured data of the May sprout for Scots pine and leaf unfolding for Oak, as well as the evaluation against daily transpiration measurements for Scots Pine, does support the applicability of the approach. The interception of precipitation has also been simulated and compared with weekly observed data for a Scots Pine stand which displays satisfactory results in both the vegetation periods and annual sums. After the development and testing phase, the model is used to analyse the effects of two scenarios. The first scenario is an increase in forest area on abandoned agricultural land that is triggered by a decrease in European agricultural production support. The second one is a shift in species composition from predominant Scots Pine to Common Oak that is based on decisions of the regional forestry authority to support a more natural species composition. The scenario effects are modelled for the federal state of Brandenburg on a 50m grid utilising spatially explicit land-use patterns. The results, for the first scenario, suggest a negative impact of an increase in forest area (9.4\% total state area) on the regional water balance, causing an increase in mean long-term annual evapotranspiration of 3.7\% at 100\% afforestation when compared to no afforestation. The relatively small annual change conceals a much more pronounced seasonal effect of a mean long-term evapotranspiration increase by 25.1\% in the spring causing a pronounced reduction in groundwater recharge and runoff. The reduction causes a lag effect that aggravates the scarcity of water resources in the summer. In contrast, in the second scenario, a change in species composition in existing forests (29.2\% total state area) from predominantly Scots Pine to Common Oak decreases the long-term annual mean evapotranspiration by 3.4\%, accompanied by a much weaker, but apparent, seasonal pattern. Both scenarios exhibit a high spatial heterogeneity because of the distinct natural conditions in the different regions of the state. Areas with groundwater levels near the surface are particularly sensitive to changes in forest area and regions with relatively high proportion of forest respond strongly to the change in species composition. In both cases this regional response is masked by a smaller linear mean effect for the total state area. Two critical sources of uncertainty in the model results have been investigated. The first one originates from the model calibration parameters estimated in the pre-study for lowland regions, such as the federal state. The combined effect of the parameters, when changed within their physical meaningful limits, unveils an overestimation of the mean water balance by 1.6\%. However, the distribution has a wide spread with 14.7\% for the 90th percentile and -9.9\% for the 10th percentile. The second source of uncertainty emerges from the parameterisation of the forest module. The analysis exhibits a standard deviation of 0.6 \% over a ten year period in the mean of the simulated evapotranspiration as a result of variance in the key forest parameters. The analysis suggests that the combined uncertainty in the model results is dominated by the uncertainties of calibration parameters. Therefore, the effect of the first scenario might be underestimated because the calculated increase in evapotranspiration is too small. This may lead to an overestimation of the water balance towards runoff and groundwater recharge. The opposite can be assumed for the second scenario in which the decrease in evapotranspiration might be overestimated.}, language = {en} } @phdthesis{MarcanoRomero2008, author = {Marcano Romero, Gabriela Helena}, title = {Investigations on sedimentology and early diagenesis in shallow-water warm-temperate to tropical miocene carbonates : a case study from Northern Sardinia, Italy}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-29207}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {This study investigated the warm-temperate to tropical shallow-water Miocene carbonates of the Perfugas basin (Anglona area), northern Sardinia, Italy (Central Mediterranean). The aim of this study was to identify and document the existence and significance of early diagenesis in this carbonate system, especially the diagenetic history, which reflects the diagenetic potential in terms of skeletal mineralogy. The motivation behind the present study was to investigate the role that early cementation has over facies stabilization linked to differences in biotic associations in shallow-water settings. Principal to this was to unravel the amount, kind and distribution of early cements in this type of carbonates, in order to complement previous studies, and hence acquire a more global perspective on non-tropical carbonate settings. The shallow-buried Sedini Limestone Unit was investigated for variations on early diagenetic features, as well as for the type of biotic association, and oxygen and carbon stable isotope stratigraphy. Results showed, that particularly at the Perfugas basin (< 15 km2), which evolves in time from a ramp into a steep-flanked platform, shallow-water facies are characterized by a "transitional" type of biotic association. The biotic assemblages change gradually over time from a heterozoan-rich into a photozoan-rich depositional system. This transition implies a change in the depositional environmental control factors such as temperature. It is considered that sedimentation took place under warm-temperate waters, which shifted to more warmer or tropical waters through time. Moreover, it was noticed that along with these changes, marine early syn-depositional cements (high-Mg calcite), with particular fabrics (e.g. fibrous), gradually contributed to the early lithification of rocks, favoring a steepening of the platform relief. The major controls for the shift of the depositional geometry was triggered by the change of the type of biotic associations (carbonate factory), related with the shift towards warmer conditions, and the development of early marine cementation. The identification of the amount and distribution of different cement phases, porosities and early diagenetic features, within facies and stratigraphy, showed that diagenesis is differential along depth, and within the depositional setting. High-Mg calcite cements (micrite, fibrous and syntaxial inclusion-rich) are early syn-depositional, facies-related (shallow-water), predominant at the platform phase, and marine in origin. Low-Mg calcite cements (bladed, syntaxial inclusionpoor and blocky) are early to late post-depositional, non-facies related (shallow- to deep-water) and shallow-burial marine in origin. However, a particular difference exists when looking at the amount and distribution of low-Mg calcite bladed cements. They become richer in shallow-water facies at the platform phase, suggesting that the enrichment of bladed cementation is linked to the appearance of metastable grains (e.g. aragonite). In both depositional profiles, the development of secondary porosity is the product of fabric-selective dissolution of grains (aragonite, high-Mg calcite) and/or cements (syntaxial inclusion-rich). However, stratigraphy and stable isotopes (oxygen and carbon), indicate that the molds found at shallower facies located beneath, and close to stratigraphic boundaries, have been produced by the infiltration of meteoric-derived water, which caused recrystallization without calcite cementation. Away from these stratigraphic locations, shallow- and deep-water facies show molds, and recrystallization, as well as low-Mg calcite cementation, interpreted as occurring during burial of these sediments by marine waters. The main cement source is suggested to be aragonite. Our results indicate that the Sedini Limestone Unit was transformed in three different diagenetic environments (marine, meteoric and shallow-burial marine); however, the degree of transformation in each diagenetic environment differs in the heterozoan-dominated ramp from the photozoan-dominated platform. It is suggested that the sediments from the ramp follow a diagenetic pathway similar to their heterozoan counterparts (i.e. lack of marine cementation, and loss of primary porosity by compaction), and the sediments from the platform follow a diagenetic pathway similar to their photozoan counterparts (i.e. marine cementation occluding primary porosity). However, in this carbonate setting, cements are Mg-calcite, no meteoric cementation was produced, and secondary porosity at shallow-water facies of the platform phase is mostly open and preserved. Despite the temporal and transitional change in biotic associations, ramp and platform facies (shallow- to deep-water facies) showed an oxygen isotope record overprinted by diagenesis. Oxygen primary marine signatures were not found. It is believed that burial diagenesis (recrystallization and low-Mg calcite cementation) was the main reason. This was unexpected at the ramp, since heterozoan-rich carbonates can hold isotope values close to primary marine signals due to their low-Mg calcite original composition. Ramp and platform facies (shallow- to deep-water facies) showed a carbon isotope record that was less affected by diagenesis. However, only at deep-water facies, did the carbon record show positive values comparable with carbon primary marine signals. The positive carbon values were noticed with major frequency at the platform deep-water facies. Moreover, these values usually showed a covariant trend with the oxygen isotope record; even that the latter did not hold positive values. The main conclusion of this work is that carbonates, deposited under warm-temperate to tropical conditions, have a unique facies, diagenesis and chemostratigraphic expression, which is different from their cool-water heterozoan or warm-water photozoan counterparts, reflecting the "transitional" nature of biotic association.}, language = {en} }