@misc{SowemimoKnoxBrownBorcherdsetal.2019, author = {Sowemimo, Oluwakemi T. and Knox-Brown, Patrick and Borcherds, Wade and Rindfleisch, Tobias and Thalhammer, Anja and Daughdrill, Gary W.}, title = {Conserved glycines control disorder and function in the cold-regulated protein, COR15A}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1089}, issn = {1866-8372}, doi = {10.25932/publishup-47221}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472217}, pages = {19}, year = {2019}, abstract = {Cold-regulated (COR) 15A is an intrinsically disordered protein (IDP) from Arabidopsis thaliana important for freezing tolerance. During freezing-induced cellular dehydration, COR15A transitions from a disordered to mostly alpha-helical structure. We tested whether mutations that increase the helicity of COR15A also increase its protective function. Conserved glycine residues were identified and mutated to alanine. Nuclear magnetic resonance (NMR) spectroscopy was used to identify residue-specific changes in helicity for wildtype (WT) COR15A and the mutants. Circular dichroism (CD) spectroscopy was used to monitor the coil-helix transition in response to increasing concentrations of trifluoroethanol (TFE) and ethylene glycol. The impact of the COR15A mutants on the stability of model membranes during a freeze-thaw cycle was investigated by fluorescence spectroscopy. The results of these experiments showed the mutants had a higher content of alpha-helical structure and the increased alpha-helicity improved membrane stabilization during freezing. Comparison of the TFE- and ethylene glycol-induced coil-helix transitions support our conclusion that increasing the transient helicity of COR15A in aqueous solution increases its ability to stabilize membranes during freezing. Altogether, our results suggest the conserved glycine residues are important for maintaining the disordered structure of COR15A but are also compatible with the formation of alpha-helical structure during freezing induced dehydration.}, language = {en} } @misc{MaassHueckelheimRillig2019, author = {Maaß, Stefanie and H{\"u}ckelheim, Ronja and Rillig, Matthias C.}, title = {Collembola laterally move biochar particles}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {770}, issn = {1866-8372}, doi = {10.25932/publishup-43883}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438839}, pages = {7}, year = {2019}, abstract = {Biochar is being discussed as a soil amendment to improve soil fertility and mitigate climate change. While biochar interactions with soil microbial biota have been frequently studied, interactions with soil mesofauna are understudied. We here present an experiment in which we tested if the collembolan Folsomia candida I) can transport biochar particles, II) if yes, how far the particles are distributed within 10 days, and III) if it shows a preference among biochars made from different feedstocks, i.e. pine wood, pine bark and spelt husks. In general, biochar particles based on pine bark and pine wood were consistently distributed significantly more than those made of spelt husks, but all types were transported more than 4cm within 10 days. Additionally, we provide evidence that biochar particles can become readily attached to the cuticle of collembolans and hence be transported, potentially even over large distances. Our study shows that the soil mesofauna can indeed act as a vector for the transport of biochar particles and show clear preferences depending on the respective feedstock, which would need to be studied in more detail in the future.}, language = {en} } @phdthesis{Goktas2019, author = {Goktas, Melis}, title = {Coiled coils as molecular force sensors for the extracellular matrix}, doi = {10.25932/publishup-42749}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427493}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 124}, year = {2019}, abstract = {Kraft spielt eine fundamentale Rolle bei der Regulation von biologischen Prozessen. Zellen messen mechanische Eigenschaften der extrazellul{\"a}ren Matrix und benutzen diese Information zur Regulierung ihrer Funktion. Dazu werden im Zytoskelett Kr{\"a}fte generiert und auf extrazellul{\"a}re Rezeptor-Ligand Wechselwirkungen {\"u}bertragen. Obwohl der grundlegende Einfluss von mechanischen Signalen f{\"u}r das Zellschicksal eindeutig belegt ist, sind die auf molekularer Ebene wirkenden Kr{\"a}fte kaum bekannt. Zur Messung dieser Kr{\"a}fte wurden verschiedene molekulare Kraftsensoren entwickelt, die ein mechanisches Inputsignal aufnehmen und in einen optischen Output (Fluoreszenz) umwandeln. Diese Arbeit etabliert einen neuen Kraftsensor-Baustein, der die mechanischen Eigenschaften der extrazellul{\"a}ren Matrix nachbildet. Dieser Baustein basiert auf nat{\"u}rlichen Matrixproteinen, sogenannten coiled coils (CCs), die α-helikale Strukturen im Zytoskelett und der Matrix formen. Eine Serie an CC-Heterodimeren wurde konzipiert und mittels Einzelmolek{\"u}l-Kraftspektroskopie und Molekulardynamik-Simulationen charakterisiert. Es wurde gezeigt, dass eine anliegende Scherkraft die Entfaltung der helikalen Struktur induziert. Die mechanische Stabilit{\"a}t (Separation der CC Helices) wird von der CC L{\"a}nge und der Zuggeschwindigkeit bestimmt. Im Folgenden wurden 2 CCs unterschiedlicher L{\"a}nge als Kraftsensoren verwendet, um die Adh{\"a}sionskr{\"a}fte von Fibroblasten und Endothelzellen zu untersuchen. Diese Kraftsensoren deuten an, dass diese Zelltypen unterschiedlich starke Kr{\"a}ften generieren und mittels Integrin-Rezeptoren auf einen extrazellul{\"a}ren Liganden (RGD-Peptid) {\"u}bertragen. Dieses neue CC-basierte Sensordesign ist ein leistungsstarkes Werkzeug zur Betrachtung zellul{\"a}rer Kraftwahrnehmungsprozesse auf molekularer Ebene, das neue Erkenntnisse {\"u}ber die involvierten Mechanismen und Kr{\"a}fte an der Zell-Matrix-Schnittstelle erm{\"o}glicht. Dar{\"u}ber hinaus wird dieses Sensordesign auch Anwendung bei der Entwicklung mechanisch kontrollierter Biomaterialien finden. Dazu k{\"o}nnen mechanisch charakterisierte, und mit einem Fluoreszenzreporter versehene, CCs in Hydrogele eingef{\"u}gt werden. Dies erlaubt die Untersuchung der Zusammenh{\"a}nge zwischen molekularer und makroskopischer Mechanik und er{\"o}ffnet neue M{\"o}glichkeiten zur Diskriminierung von lokalen und globalen Faktoren, die die zellul{\"a}re Antwort auf mechanische Signale bestimmen.}, language = {en} } @phdthesis{LopezGarcia2019, author = {L{\´o}pez Garc{\´i}a, Patricia}, title = {Coiled coils as mechanical building blocks}, doi = {10.25932/publishup-42956}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429568}, school = {Universit{\"a}t Potsdam}, pages = {xi, 130}, year = {2019}, abstract = {The natural abundance of Coiled Coil (CC) motifs in cytoskeleton and extracellular matrix proteins suggests that CCs play an important role as passive (structural) and active (regulatory) mechanical building blocks. CCs are self-assembled superhelical structures consisting of 2-7 α-helices. Self-assembly is driven by hydrophobic and ionic interactions, while the helix propensity of the individual helices contributes additional stability to the structure. As a direct result of this simple sequence-structure relationship, CCs serve as templates for protein design and sequences with a pre-defined thermodynamic stability have been synthesized de novo. Despite this quickly increasing knowledge and the vast number of possible CC applications, the mechanical function of CCs has been largely overlooked and little is known about how different CC design parameters determine the mechanical stability of CCs. Once available, this knowledge will open up new applications for CCs as nanomechanical building blocks, e.g. in biomaterials and nanobiotechnology. With the goal of shedding light on the sequence-structure-mechanics relationship of CCs, a well-characterized heterodimeric CC was utilized as a model system. The sequence of this model system was systematically modified to investigate how different design parameters affect the CC response when the force is applied to opposing termini in a shear geometry or separated in a zipper-like fashion from the same termini (unzip geometry). The force was applied using an atomic force microscope set-up and dynamic single-molecule force spectroscopy was performed to determine the rupture forces and energy landscape properties of the CC heterodimers under study. Using force as a denaturant, CC chain separation is initiated by helix uncoiling from the force application points. In the shear geometry, this allows uncoiling-assisted sliding parallel to the force vector or dissociation perpendicular to the force vector. Both competing processes involve the opening of stabilizing hydrophobic (and ionic) interactions. Also in the unzip geometry, helix uncoiling precedes the rupture of hydrophobic contacts. In a first series of experiments, the focus was placed on canonical modifications in the hydrophobic core and the helix propensity. Using the shear geometry, it was shown that both a reduced core packing and helix propensity lower the thermodynamic and mechanical stability of the CC; however, with different effects on the energy landscape of the system. A less tightly packed hydrophobic core increases the distance to the transition state, with only a small effect on the barrier height. This originates from a more dynamic and less tightly packed core, which provides more degrees of freedom to respond to the applied force in the direction of the force vector. In contrast, a reduced helix propensity decreases both the distance to the transition state and the barrier height. The helices are 'easier' to unfold and the remaining structure is less thermodynamically stable so that dissociation perpendicular to the force axis can occur at smaller deformations. Having elucidated how canonical sequence modifications influence CC mechanics, the pulling geometry was investigated in the next step. Using one and the same sequence, the force application points were exchanged and two different shear and one unzipping geometry were compared. It was shown that the pulling geometry determines the mechanical stability of the CC. Different rupture forces were observed in the different shear as well as in the unzipping geometries, suggesting that chain separation follows different pathways on the energy landscape. Whereas the difference between CC shearing and unzipping was anticipated and has also been observed for other biological structures, the observed difference for the two shear geometries was less expected. It can be explained with the structural asymmetry of the CC heterodimer. It is proposed that the direction of the α-helices, the different local helix propensities and the position of a polar asparagine in the hydrophobic core are responsible for the observed difference in the chain separation pathways. In combination, these factors are considered to influence the interplay between processes parallel and perpendicular to the force axis. To obtain more detailed insights into the role of helix stability, helical turns were reinforced locally using artificial constraints in the form of covalent and dynamic 'staples'. A covalent staple bridges to adjacent helical turns, thus protecting them against uncoiling. The staple was inserted directly at the point of force application in one helix or in the same terminus of the other helix, which did not experience the force directly. It was shown that preventing helix uncoiling at the point of force application reduces the distance to the transition state while slightly increasing the barrier height. This confirms that helix uncoiling is critically important for CC chain separation. When inserted into the second helix, this stabilizing effect is transferred across the hydrophobic core and protects the force-loaded turns against uncoiling. If both helices were stapled, no additional increase in mechanical stability was observed. When replacing the covalent staple with a dynamic metal-coordination bond, a smaller decrease in the distance to the transition was observed, suggesting that the staple opens up while the CC is under load. Using fluorinated amino acids as another type of non-natural modification, it was investigated how the enhanced hydrophobicity and the altered packing at the interface influences CC mechanics. The fluorinated amino acid was inserted into one central heptad of one or both α-helices. It was shown that this substitution destabilized the CC thermodynamically and mechanically. Specifically, the barrier height was decreased and the distance to the transition state increased. This suggests that a possible stabilizing effect of the increased hydrophobicity is overruled by a disturbed packing, which originates from a bad fit of the fluorinated amino acid into the local environment. This in turn increases the flexibility at the interface, as also observed for the hydrophobic core substitution described above. In combination, this confirms that the arrangement of the hydrophobic side chains is an additional crucial factor determining the mechanical stability of CCs. In conclusion, this work shows that knowledge of the thermodynamic stability alone is not sufficient to predict the mechanical stability of CCs. It is the interplay between helix propensity and hydrophobic core packing that defines the sequence-structure-mechanics relationship. In combination, both parameters determine the relative contribution of processes parallel and perpendicular to the force axis, i.e. helix uncoiling and uncoiling-assisted sliding as well as dissociation. This new mechanistic knowledge provides insight into the mechanical function of CCs in tissues and opens up the road for designing CCs with pre-defined mechanical properties. The library of mechanically characterized CCs developed in this work is a powerful starting point for a wide spectrum of applications, ranging from molecular force sensors to mechanosensitive crosslinks in protein nanostructures and synthetic extracellular matrix mimics.}, language = {en} } @misc{SchornSalmanCarvalhoLittmannetal.2019, author = {Schorn, Sina and Salman-Carvalho, Verena and Littmann, Sten and Ionescu, Danny and Grossart, Hans-Peter and Cypionka, Heribert}, title = {Cell architecture of the giant sulfur bacterium achromatium oxaliferum}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-54993}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549935}, pages = {10}, year = {2019}, abstract = {Achromatium oxaliferum is a large sulfur bacterium easily recognized by large intracellular calcium carbonate bodies. Although these bodies often fill major parts of the cells' volume, their role and specific intracellular location are unclear. In this study, we used various microscopy and staining techniques to identify the cell compartment harboring the calcium carbonate bodies. We observed that Achromatium cells often lost their calcium carbonate bodies, either naturally or induced by treatments with diluted acids, ethanol, sodium bicarbonate and UV radiation which did not visibly affect the overall shape and motility of the cells (except for UV radiation). The water-soluble fluorescent dye fluorescein easily diffused into empty cavities remaining after calcium carbonate loss. Membranes (stained with Nile Red) formed a network stretching throughout the cell and surrounding empty or filled calcium carbonate cavities. The cytoplasm (stained with FITC and SYBR Green for nucleic acids) appeared highly condensed and showed spots of dissolved Ca2+ (stained with Fura-2). From our observations, we conclude that the calcium carbonate bodies are located in the periplasm, in extra-cytoplasmic pockets of the cytoplasmic membrane and are thus kept separate from the cell's cytoplasm. This periplasmic localization of the carbonate bodies might explain their dynamic formation and release upon environmental changes.}, language = {en} } @phdthesis{Grafe2019, author = {Grafe, Marianne Erika}, title = {Analysis of supramolecular assemblies of NE81, the first lamin protein in a non-metazoan organism}, doi = {10.25932/publishup-44180}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441802}, school = {Universit{\"a}t Potsdam}, pages = {V, 94}, year = {2019}, abstract = {Lamine sind Proteine an der inneren Kernh{\"u}lle und bilden zusammen mit verbundenen Proteinen die nukle{\"a}re Lamina. Dieses Netzwerk sorgt f{\"u}r die Stabilit{\"a}t des Zellkerns und unterst{\"u}tzt die Organisation des Zell-Zytoskeletts. Zus{\"a}tzlich sind Lamine und ihre verbundenen Proteine in viele Prozesse wie Genregulation und Zelldifferenzierung involviert. Bis 2012 war der Stand der Forschung, dass nur bei mehrzelligen Organismen eine nukle{\"a}re Lamina zu finden ist. NE81 ist das erste lamin-{\"a}hnliche Protein, das in einem nicht-mehrzelligen Organismus (Dictyostelium discoideum) entdeckt wurde. Es hat viele Eigenschaften und Strukturmerkmale mit Laminen gemeinsam. Dazu z{\"a}hlt der dreiteilige Aufbau des Proteins, eine Phosphorylierungsstelle f{\"u}r ein Zellzyklus-abh{\"a}ngiges Enzym, ein Kernlokalisationssignal, wodurch das Protein in den Kern transportiert wird, sowie eine C-terminale Sequenz zur Verankerung des Proteins in der Kernh{\"u}lle. In dieser Arbeit wurden verschiedene Methoden zur vereinfachten Untersuchung von Laminstrukturen getestet, um zu zeigen, dass sich NE81 wie bereits bekannte Lamin-Proteine verh{\"a}lt und supramolekulare Netzwerke aus Laminfilamenten bildet. Zur Analyse der Struktur supramolekularer Anordnungen wurde das Protein durch Entfernen des Kernlokalisationssignals auf der {\"a}ußeren Kernh{\"u}lle von Dictyostelium gebildet. Die anschließende Untersuchung der Oberfl{\"a}che der Kerne mit einem Rasterelektronenmikroskop zeigte, dass NE81 Strukturen in der Gr{\"o}ße von Laminen bildet, allerdings nicht in regelm{\"a}ßigen filament{\"o}sen Anordnungen. Um die Entstehung der Laminfilamente zu untersuchen, wurde l{\"o}sliches NE81 aus Dictyostelium aufgereinigt und mit verschiedenen mikroskopischen Methoden untersucht. Dabei wurde festgestellt, dass NE81 unter Niedrigsalz-Bedingungen d{\"u}nne, fadenf{\"o}rmige Strukturen und Netzwerke ausbildet, die denen von S{\"a}ugetier-Laminen sehr {\"a}hnlich sind. Die Mutation der Phosphorylierungsstelle von NE81 zu einer imitierenden dauerhaften Phosphorylierung von NE81 in der Zelle, zeigte zun{\"a}chst ein gel{\"o}stes Protein, das {\"u}berraschenderweise unter Blaulichtbestrahlung der Zelle wieder lamin-{\"a}hnliche Anordnungen formte. Die Ergebnisse dieser Arbeit zeigen, dass NE81 echte Laminstrukturen ausbilden kann und hebt Dictyostelium als Nicht-S{\"a}ugetier-Modellorganismus mit einer gut charakterisierten Kernh{\"u}lle, mit allen relevanten, aus tierischen Zellen bekannten Proteinen, hervor.}, language = {en} } @misc{RojasJimenezRieckWurzbacheretal.2019, author = {Rojas-Jimenez, Keilor and Rieck, Angelika and Wurzbacher, Christian and J{\"u}rgens, Klaus and Labrenz, Matthias and Grossart, Hans-Peter}, title = {A Salinity Threshold Separating Fungal Communities in the Baltic Sea}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {739}, issn = {1866-8372}, doi = {10.25932/publishup-43493}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-434937}, pages = {9}, year = {2019}, abstract = {Salinity is a significant factor for structuring microbial communities, but little is known for aquatic fungi, particularly in the pelagic zone of brackish ecosystems. In this study, we explored the diversity and composition of fungal communities following a progressive salinity decline (from 34 to 3 PSU) along three transects of ca. 2000 km in the Baltic Sea, the world's largest estuary. Based on 18S rRNA gene sequence analysis, we detected clear changes in fungal community composition along the salinity gradient and found significant differences in composition of fungal communities established above and below a critical value of 8 PSU. At salinities below this threshold, fungal communities resembled those from freshwater environments, with a greater abundance of Chytridiomycota, particularly of the orders Rhizophydiales, Lobulomycetales, and Gromochytriales. At salinities above 8 PSU, communities were more similar to those from marine environments and, depending on the season, were dominated by a strain of the LKM11 group (Cryptomycota) or by members of Ascomycota and Basidiomycota. Our results highlight salinity as an important environmental driver also for pelagic fungi, and thus should be taken into account to better understand fungal diversity and ecological function in the aquatic realm.}, language = {en} } @misc{JantzenWozniakKappeletal.2019, author = {Jantzen, Friederike and Wozniak, Natalia Joanna and Kappel, Christian and Sicard, Adrien and Lenhard, Michael}, title = {A high‑throughput amplicon‑based method for estimating outcrossing rates}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {745}, issn = {1866-8372}, doi = {10.25932/publishup-43565}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435657}, pages = {14}, year = {2019}, abstract = {Background: The outcrossing rate is a key determinant of the population-genetic structure of species and their long-term evolutionary trajectories. However, determining the outcrossing rate using current methods based on PCRgenotyping individual offspring of focal plants for multiple polymorphic markers is laborious and time-consuming. Results: We have developed an amplicon-based, high-throughput enabled method for estimating the outcrossing rate and have applied this to an example of scented versus non-scented Capsella (Shepherd's Purse) genotypes. Our results show that the method is able to robustly capture differences in outcrossing rates. They also highlight potential biases in the estimates resulting from differential haplotype sharing of the focal plants with the pollen-donor population at individual amplicons. Conclusions: This novel method for estimating outcrossing rates will allow determining this key population-genetic parameter with high-throughput across many genotypes in a population, enabling studies into the genetic determinants of successful pollinator attraction and outcrossing.}, language = {en} }