@article{ZersonNeumannSteyrleuthneretal.2016, author = {Zerson, Mario and Neumann, Martin and Steyrleuthner, Robert and Neher, Dieter and Magerle, Robert}, title = {Surface Structure of Semicrystalline Naphthalene Diimide-Bithiophene Copolymer Films Studied with Atomic Force Microscopy}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {49}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.6b00988}, pages = {6549 -- 6557}, year = {2016}, language = {en} } @article{PingelArvindKoellnetal.2016, author = {Pingel, Patrick and Arvind, Malavika and K{\"o}lln, Lisa and Steyrleuthner, Robert and Kraffert, Felix and Behrends, Jan and Janietz, Silvia and Neher, Dieter}, title = {p-Type Doping of Poly(3-hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane}, series = {Advanced electronic materials}, volume = {2}, journal = {Advanced electronic materials}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2199-160X}, doi = {10.1002/aelm.201600204}, pages = {7}, year = {2016}, abstract = {State-of-the-art p-type doping of organic semiconductors is usually achieved by employing strong -electron acceptors, a prominent example being tetrafluorotetracyanoquinodimethane (F(4)TCNQ). Here, doping of the semiconducting model polymer poly(3-hexylthiophene), P3HT, using the strong Lewis acid tris(pentafluorophenyl)borane (BCF) as a dopant, is investigated by admittance, conductivity, and electron paramagnetic resonance measurements. The electrical characteristics of BCF- and F(4)TCNQ-doped P3HT layers are shown to be very similar in terms of the mobile hole density and the doping efficiency. Roughly 18\% of the employed dopants create mobile holes in either F-4 TCNQ- or BCF-doped P3HT, while the majority of doping-induced holes remain strongly Coulomb-bound to the dopant anions. Despite similar hole densities, conductivity and hole mobility are higher in BCF-doped P3HT layers than in F(4)TCNQ-doped samples. This and the good solubility in many organic solvents render BCF very useful for p-type doping of organic semiconductors.}, language = {en} } @article{LigorioNardiSteyrleuthneretal.2016, author = {Ligorio, G. and Nardi, M. V. and Steyrleuthner, Robert and Ihiawakrim, D. and Crespo-Monteiro, N. and Brinkmann, Martin and Neher, Dieter and Koch, N.}, title = {Metal nanoparticle mediated space charge and its optical control in an organic hole-only device}, series = {Applied physics letters}, volume = {108}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4945710}, pages = {5}, year = {2016}, abstract = {We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10(4) due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed. (C) 2016 AIP Publishing LLC.}, language = {en} }