@article{SchneidervanSchaikZangerleetal.2016, author = {Schneider, A. -K. and van Schaik, L. and Zangerle, A. and Eccard, Jana and Schroeder, B.}, title = {Which abiotic filters shape earthworm distribution patterns at the catchment scale?}, series = {European journal of soil science}, volume = {67}, journal = {European journal of soil science}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1351-0754}, doi = {10.1111/ejss.12346}, pages = {431 -- 442}, year = {2016}, abstract = {Earthworms affect various soil ecosystem processes in their role as ecosystem engineers. The spatial distribution of earthworms determines the spatial distribution of their functional effects. In particular, earthworm-induced macropore networks may act as preferential flow pathways. In this research we aimed to determine earthworm distributions at the catchment scale with species distribution models (SDMs). We used land-use types, temporally invariant topography-related variables and plot-scale soil characteristics such as pH and organic matter content. We used data from spring 2013 to estimate probability distributions of the occurrence of ten earthworm species. To assess the robustness of these models, we tested temporal transferability by evaluating the accuracy of predictions from the models derived for the spring data with the predictions from data of two other field surveys in autumn 2012 and 2013. In addition, we compared the performance of SDMs based (i) on temporally varying plot-scale predictor variables with (ii) those based on temporally invariant catchment-scale predictors. Models based on catchment-scale predictors, especially land use and slope, experience a small loss of predictive performance only compared with plot-scale SDMs but have greater temporal transferability. Earthworm distribution maps derived from this kind of SDM are a prerequisite for understanding the spatial distribution patterns of functional effects related to earthworms.}, language = {en} } @article{HeimSchroederEccardetal.2016, author = {Heim, Olga and Schr{\"o}der, Assja and Eccard, Jana and Jung, Kirsten and Voigt, Christian C.}, title = {Seasonal activity patterns of European bats above intensively used farmland}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {233}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.09.002}, pages = {130 -- 139}, year = {2016}, abstract = {Bats are top insect predators on farmland, yet they suffer from intensive farmland management. Here, we evaluated the seasonal activity patterns of European bats above large, arable fields and compared these patterns between ecologically distinct bat species. Using repeated passive acoustic monitoring on a total of 93 arable fields in 2 years in Brandenburg, Germany, we surveyed the activity of different bat species between early spring and autumn. We then used generalized additive mixed models to describe and compare the seasonal bat activity patterns between bat categories, which were build based on the affiliation to a functional group and migratory class, while controlling for local weather conditions. In general, the affiliation to a bat category in interaction with the season in addition to cloud cover and ambient air temperature explained a major part of bat activity. The season was also an important factor for the foraging activity of open-space specialists such as Nyctalus noctula but showed only a weak effect on species such as Pipistreilus nathusii which are adapted to edge-space habitats. Across the seasons, habitat use intensity was high during the period of swarming and migration and low during the energy demanding period of lactation. Seasonal patterns in foraging activity showed that open-space specialists foraged more intensively above agricultural fields during the migration period, while edge-space specialists foraged also during the energy demanding period of lactation. We conclude that the significant seasonal fluctuations in bat activity and significant differences between bat categories in open agricultural landscapes should be taken into consideration when designing monitoring schemes and management plans for bat species in regions dominated by agriculture. Also, management plans should be directed to improve the conditions on arable land especially for bat species which would be classified as narrow-space foragers such as Myotis species. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchmidtSaxenhoferDrewesetal.2016, author = {Schmidt, Sabrina and Saxenhofer, Moritz and Drewes, Stephan and Schlegel, Mathias and Wanka, Konrad M. and Frank, Raphael and Klimpel, Sven and von Blanckenhagen, Felix and Maaz, Denny and Herden, Christiane and Freise, Jona and Wolf, Ronny and Stubbe, Michael and Borkenhagen, Peter and Ansorge, Hermann and Eccard, Jana and Lang, Johannes and Jourdain, Elsa and Jacob, Jens and Marianneau, Philippe and Heckel, Gerald and Ulrich, Rainer G{\"u}nter}, title = {High genetic structuring of Tula hantavirus}, series = {Archives of virology}, volume = {161}, journal = {Archives of virology}, publisher = {Springer}, address = {Wien}, issn = {0304-8608}, doi = {10.1007/s00705-016-2762-6}, pages = {1135 -- 1149}, year = {2016}, abstract = {Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 \%) was higher than that in field voles (9.2 \%) and water voles (10.0 \%). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas.}, language = {en} } @article{SchusterHerdeMazzonietal.2016, author = {Schuster, Andrea C. and Herde, Antje and Mazzoni, Camila J. and Eccard, Jana and Sommer, Simone}, title = {Evidence for selection maintaining MHC diversity in a rodent species despite strong density fluctuations}, series = {Immunogenetics}, volume = {68}, journal = {Immunogenetics}, publisher = {Springer}, address = {New York}, issn = {0093-7711}, doi = {10.1007/s00251-016-0916-z}, pages = {429 -- 437}, year = {2016}, abstract = {Strong spatiotemporal variation in population size often leads to reduced genetic diversity limiting the adaptive potential of individual populations. Key genes of adaptive variation are encoded by the immune genes of the major histocompatibility complex (MHC) playing an essential role in parasite resistance. How MHC variation persists in rodent populations that regularly experience population bottlenecks remains an important topic in evolutionary genetics. We analysed the consequences of strong population fluctuations on MHC class II DRB exon 2 diversity in two distant common vole (Microtus arvalis) populations in three consecutive years using a high-throughput sequencing approach. In 143 individuals, we detected 25 nucleotide alleles translating into 14 unique amino acid MHC alleles belonging to at least three loci. Thus, the overall allelic diversity and amino acid distance among the remaining MHC alleles, used as a surrogate for the range of pathogenic antigens that can be presented to T-cells, are still remarkably high. Both study populations did not show significant population differentiation between years, but significant differences were found between sites. We concluded that selection processes seem to be strong enough to maintain moderate levels of MHC diversity in our study populations outcompeting genetic drift, as the same MHC alleles were conserved between years. Differences in allele frequencies between populations might be the outcome of different local parasite pressures and/or genetic drift. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in cyclic populations.}, language = {en} } @article{ReilImholtDrewesetal.2016, author = {Reil, Daniela and Imholt, Christian and Drewes, Stephan and Ulrich, Rainer G{\"u}nter and Eccard, Jana and Jacob, Jens}, title = {Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany?}, series = {Zoonoses and Public Health}, volume = {63}, journal = {Zoonoses and Public Health}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1863-1959}, doi = {10.1111/zph.12217}, pages = {83 -- 88}, year = {2016}, abstract = {Bank voles can harbour Puumala virus (PUUV) and vole populations usually peak in years after beech mast. A beech mast occurred in 2014 and a predictive model indicates high vole abundance in 2015. This pattern is similar to the years 2009/2011 when beech mast occurred, bank voles multiplied and human PUUV infections increased a year later. Given similar environmental conditions in 2014/2015, increased risk of human PUUV infections in 2015 is likely. Risk management measures are recommended.}, language = {en} }