@article{DischerRichterDoellner2016, author = {Discher, S{\"o}ren and Richter, Rico and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Interactive and View-Dependent See-Through Lenses for Massive 3D Point Clouds}, series = {Advances in 3D Geoinformation}, journal = {Advances in 3D Geoinformation}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-25691-7}, issn = {1863-2246}, doi = {10.1007/978-3-319-25691-7_3}, pages = {49 -- 62}, year = {2016}, abstract = {3D point clouds are a digital representation of our world and used in a variety of applications. They are captured with LiDAR or derived by image-matching approaches to get surface information of objects, e.g., indoor scenes, buildings, infrastructures, cities, and landscapes. We present novel interaction and visualization techniques for heterogeneous, time variant, and semantically rich 3D point clouds. Interactive and view-dependent see-through lenses are introduced as exploration tools to enhance recognition of objects, semantics, and temporal changes within 3D point cloud depictions. We also develop filtering and highlighting techniques that are used to dissolve occlusion to give context-specific insights. All techniques can be combined with an out-of-core real-time rendering system for massive 3D point clouds. We have evaluated the presented approach with 3D point clouds from different application domains. The results show the usability and how different visualization and exploration tasks can be improved for a variety of domain-specific applications.}, language = {en} } @article{SemmoLimbergerKyprianidisetal.2016, author = {Semmo, Amir and Limberger, Daniel and Kyprianidis, Jan Eric and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Image stylization by interactive oil paint filtering}, series = {Ricerche di Storia Politica}, volume = {55}, journal = {Ricerche di Storia Politica}, publisher = {Elsevier}, address = {Oxford}, issn = {0097-8493}, doi = {10.1016/j.cag.2015.12.001}, pages = {157 -- 171}, year = {2016}, abstract = {This paper presents an interactive system for transforming images into an oil paint look. The system comprises two major stages. First, it derives dominant colors from an input image for feature-aware recolorization and quantization to conform with a global color palette. Afterwards, it employs non-linear filtering based on the smoothed structure adapted to the main feature contours of the quantized image to synthesize a paint texture in real-time. Our filtering approach leads to homogeneous outputs in the color domain and enables creative control over the visual output, such as color adjustments and per-pixel parametrizations by means of interactive painting. To this end, our system introduces a generalized brush-based painting interface that operates within parameter spaces to locally adjust the level of abstraction of the filtering effects. Several results demonstrate the various applications of our filtering approach to different genres of photography. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ParedesAmorBooetal.2016, author = {Paredes, E. G. and Amor, M. and Boo, M. and Bruguera, J. D. and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Hybrid terrain rendering based on the external edge primitive}, series = {International journal of geographical information science}, volume = {30}, journal = {International journal of geographical information science}, publisher = {American Chemical Society}, address = {Abingdon}, issn = {1365-8816}, doi = {10.1080/13658816.2015.1105375}, pages = {1095 -- 1116}, year = {2016}, abstract = {Hybrid terrain models combine large regular data sets and high-resolution irregular meshes [triangulated irregular network (TIN)] for topographically and morphologically complex terrain features such as man-made microstructures or cliffs. In this paper, a new method to generate and visualize this kind of 3D hybrid terrain models is presented. This method can integrate geographic data sets from multiple sources without a remeshing process to combine the heterogeneous data of the different models. At the same time, the original data sets are preserved without modification, and, thus, TIN meshes can be easily edited and replaced, among other features. Specifically, our approach is based on the utilization of the external edges of convexified TINs as the fundamental primitive to tessellate the space between both types of meshes. Our proposal is eminently parallel, requires only a minimal preprocessing phase, and minimizes the storage requirements when compared with the previous proposals.}, language = {en} } @article{BuschmannTrappDoellner2016, author = {Buschmann, Stefan and Trapp, Matthias and D{\"o}llner, J{\"u}rgen Roland Friedrich}, title = {Animated visualization of spatial-temporal trajectory data for air-traffic analysis}, series = {The Visual Computer}, volume = {32}, journal = {The Visual Computer}, publisher = {Springer}, address = {New York}, issn = {0178-2789}, doi = {10.1007/s00371-015-1185-9}, pages = {371 -- 381}, year = {2016}, abstract = {With increasing numbers of flights worldwide and a continuing rise in airport traffic, air-traffic management is faced with a number of challenges. These include monitoring, reporting, planning, and problem analysis of past and current air traffic, e.g., to identify hotspots, minimize delays, or to optimize sector assignments to air-traffic controllers. To cope with these challenges, cyber worlds can be used for interactive visual analysis and analytical reasoning based on aircraft trajectory data. However, with growing data size and complexity, visualization requires high computational efficiency to process that data within real-time constraints. This paper presents a technique for real-time animated visualization of massive trajectory data. It enables (1) interactive spatio-temporal filtering, (2) generic mapping of trajectory attributes to geometric representations and appearance, and (3) real-time rendering within 3D virtual environments such as virtual 3D airport or 3D city models. Different visualization metaphors can be efficiently built upon this technique such as temporal focus+context, density maps, or overview+detail methods. As a general-purpose visualization technique, it can be applied to general 3D and 3+1D trajectory data, e.g., traffic movement data, geo-referenced networks, or spatio-temporal data, and it supports related visual analytics and data mining tasks within cyber worlds.}, language = {en} }