@article{BernhardtHebbelnRegenbergetal.2016, author = {Bernhardt, Anne and Hebbeln, Dierk and Regenberg, Marcus and Lueckge, Andreas and Strecker, Manfred}, title = {Shelfal sediment transport by an undercurrent forces turbidity-current activity during high sea level along the Chile continental margin}, series = {Geology}, volume = {44}, journal = {Geology}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0091-7613}, doi = {10.1130/G37594.1}, pages = {295 -- 298}, year = {2016}, abstract = {Terrigenous sediment supply, marine transport, and depositional processes along tectonically active margins are key to decoding turbidite successions as potential archives of climatic and seismic forcings. Sequence stratigraphic models predict coarse-grained sediment delivery to deep-marine sites mainly during sea-level fall and lowstand. Marine siliciclastic deposition during transgressions and highstands has been attributed to sustained connectivity between terrigenous sources and marine sinks facilitated by narrow shelves. To decipher the controls on Holocene highstand turbidite deposition, we analyzed 12 sediment cores from spatially discrete, coeval turbidite systems along the Chile margin (29 degrees-40 degrees S) with changing climatic and geomorphic characteristics but uniform changes in sea level. Sediment cores from intraslope basins in north-central Chile (29 degrees-33 degrees S) offshore a narrow to absent shelf record a shut-off of turbidite deposition during the Holocene due to postglacial aridification. In contrast, core sites in south-central Chile (36 degrees-40 degrees S) offshore a wide shelf record frequent turbidite deposition during highstand conditions. Two core sites are linked to the Biobio river-canyon system and receive sediment directly from the river mouth. However, intraslope basins are not connected via canyons to fluvial systems but yield even higher turbidite frequencies. High sediment supply combined with a wide shelf and an undercurrent moving sediment toward the shelf edge appear to control Holocene turbidite sedimentation and distribution. Shelf undercurrents may play an important role in lateral sediment transport and supply to the deep sea and need to be accounted for in sediment-mass balances.}, language = {en} } @article{SchwanghartBernhardtStolleetal.2016, author = {Schwanghart, Wolfgang and Bernhardt, Anne and Stolle, Amelie and Hoelzmann, Philipp and Adhikari, Basanta R. and Andermann, Christoff and Tofelde, Stefanie and Merchel, Silke and Rugel, Georg and Fort, Monique and Korup, Oliver}, title = {Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya}, series = {Science}, volume = {351}, journal = {Science}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aac9865}, pages = {147 -- 150}, year = {2016}, abstract = {Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal's second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away.}, language = {en} }