@phdthesis{MartinezValdes2016, author = {Mart{\´i}nez Vald{\´e}s, Eduardo Andr{\´e}s}, title = {Neuromuscular adaptations of either endurance or high-intensity interval training}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-396383}, school = {Universit{\"a}t Potsdam}, pages = {VII, 140, XII}, year = {2016}, abstract = {During the last decade, high intensity interval training (HIIT) has been used as an alternative to endurance (END) exercise, since it requires less time to produce similar physiological adaptations. Previous literature has focused on HIIT changes in aerobic metabolism and cardiorespiratory fitness, however, there are currently no studies focusing on its neuromuscular adaptations. Therefore, this thesis aimed to compare the neuromuscular adaptations of both HIIT and END after a two-week training intervention, by using a novel technology called high-density surface electromyography (HDEMG) motor unit decomposition. This project consisted in two experiments, where healthy young men were recruited (aged between 18 to 35 years). In experiment one, the reliability of HDEMG motor unit variables (mean discharge rate, peak-to-peak amplitude, conduction velocity and discharge rate variability) was tested (Study 1), a new method to track the same motor units longitudinally was proposed (Study 2), and the level of low (<5Hz) and high (>5Hz) frequency motor unit coherence between vastus medialis (VM) and lateralis (VL) knee extensor muscles was measured (Study 4). In experiment two, a two-week HIIT and END intervention was conducted where cardiorespiratory fitness parameters (e.g. peak oxygen uptake) and motor unit variables from the VM and VL muscles were assessed pre and post intervention (Study 3). The results showed that HDEMG is reliable to monitor changes in motor unit activity and also allows the tracking of the same motor units across different testing sessions. As expected, both HIIT and END improved cardiorespiratory fitness parameters similarly. However, the neuromuscular adaptations of both types of training differed after the intervention, with HIIT showing a significant increase in knee extensor muscle strength that was accompanied by increased VM and VL motor unit discharge rates and HDEMG amplitude at the highest force levels [(50 and 70\% of the maximum voluntary contraction force (MVC)], while END training induced a marked increase in time to task failure at lower force levels (30\% MVC), without any influence on HDEMG amplitude and discharge rates. Additionally, the results showed that VM and VL muscles share most of their synaptic input since they present a large amount of low and high frequency motor unit coherence, which can explain the findings of the training intervention where both muscles showed similar changes in HDEMG amplitude and discharge rates. Taken together, the findings of the current thesis show that despite similar improvements in cardiopulmonary fitness, HIIT and END induced opposite adjustments in motor unit behavior. These results suggest that HIIT and END show specific neuromuscular adaptations, possibly related to their differences in exercise load intensity and training volume.}, language = {en} }