@phdthesis{Engel2016, author = {Engel, Tilman}, title = {Motor control strategies in response to unexpected disturbances of dynamic postural control in people with and without low back pain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400742}, school = {Universit{\"a}t Potsdam}, pages = {110}, year = {2016}, abstract = {Background: Low back pain (LBP) is one of the world wide leading causes of limited activity and disability. Impaired motor control has been found to be one of the possible factors related to the development or persistence of LBP. In particularly, motor control strategies seemed to be altered in situations requiring reactive responses of the trunk counteracting sudden external forces. However, muscular responses were mostly assessed in (quasi) static testing situations under simplified laboratory conditions. Comprehensive investigations in motor control strategies during dynamic everyday situations are lacking. The present research project aimed to investigate muscular compensation strategies following unexpected gait perturbations in people with and without LBP. A novel treadmill stumbling protocol was tested for its validity and reliability to provoke muscular reflex responses at the trunk and the lower extremities (study 1). Thereafter, motor control strategies in response to sudden perturbations were compared between people with LBP and asymptomatic controls (CTRL) (study 2). In accordance with more recent concepts of motor adaptation to pain, it was hypothesized that pain may have profound consequences on motor control strategies in LBP. Therefore, it was investigated whether differences in compensation strategies were either consisting of changes local to the painful area at the trunk, or also being present in remote areas such as at the lower extremities. Methods: All investigations were performed on a custom build split-belt treadmill simulating trip-like events by unexpected rapid deceleration impulses (amplitude: 2 m/s; duration: 100 ms; 200 ms after heel contact) at 1m/s baseline velocity. A total number of 5 (study 1) and 15 (study 2) right sided perturbations were applied during walking trials. Muscular activities were assessed by surface electromyography (EMG), recorded at 12 trunk muscles and 10 (study 1) respectively 5 (study 2) leg muscles. EMG latencies of muscle onset [ms] were retrieved by a semi-automatic detection method. EMG amplitudes (root mean square (RMS)) were assessed within 200 ms post perturbation, normalized to full strides prior to any perturbation [RMS\%]. Latency and amplitude investigations were performed for each muscle individually, as well as for pooled data of muscles grouped by location. Characteristic pain intensity scores (CPIS; 0-100 points, von Korff) based on mean intensity ratings reported for current, worst and average pain over the last three months were used to allocate participants into LBP (≥30 points) or CTRL (≤10 points). Test-retest reproducibility between measurements was determined by a compilation of measures of reliability. Differences in muscular activities between LBP and CTRL were analysed descriptively for individual muscles; differences based on grouped muscles were statistically tested by using a multivariate analysis of variance (MANOVA, α =0.05). Results: Thirteen individuals were included into the analysis of study 1. EMG latencies revealed reflex muscle activities following the perturbation (mean: 89 ms). Respective EMG amplitudes were on average 5-fold of those assessed in unperturbed strides, though being characterized by a high inter-subject variability. Test-retest reliability of muscle latencies showed a high reproducibility, both for muscles at the trunk and legs. In contrast, reproducibility of amplitudes was only weak to moderate for individual muscles, but increased when being assessed as a location specific outcome summary of grouped muscles. Seventy-six individuals were eligible for data analysis in study 2. Group allocation according to CPIS resulted in n=25 for LBP and n=29 for CTRL. Descriptive analysis of activity onsets revealed longer delays for all muscles within LBP compared to CTRL (trunk muscles: mean 10 ms; leg muscles: mean 3 ms). Onset latencies of grouped muscles revealed statistically significant differences between LBP and CTRL for right (p=0.009) and left (p=0.007) abdominal muscle groups. EMG amplitude analysis showed a high variability in activation levels between individuals, independent of group assignment or location. Statistical testing of grouped muscles indicated no significant difference in amplitudes between LBP and CTRL. Discussion: The present research project could show that perturbed treadmill walking is suitable to provoke comprehensive reflex responses at the trunk and lower extremities, both in terms of sudden onsets and amplitudes of reflex activity. Moreover, it could demonstrate that sudden loadings under dynamic conditions provoke an altered reflex timing of muscles surrounding the trunk in people with LBP compared to CTRL. In line with previous investigations, compensation strategies seemed to be deployed in a task specific manner, with differences between LBP and CTRL being evident predominately at ventral sides. No muscular alterations exceeding the trunk could be found when being assessed under the automated task of locomotion. While rehabilitation programs tailored towards LBP are still under debate, it is tempting to urge the implementation of dynamic sudden loading incidents of the trunk to enhance motor control and thereby to improve spinal protection. Moreover, in respect to the consistently observed task specificity of muscular compensation strategies, such a rehabilitation program should be rich in variety.}, language = {en} }