@phdthesis{Thiede2019, author = {Thiede, Tobias}, title = {A multiscale analysis of additively manufactured lattice structures}, doi = {10.25932/publishup-47041}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470418}, school = {Universit{\"a}t Potsdam}, pages = {xi, 97, LIII}, year = {2019}, abstract = {Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50\% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions.}, language = {en} } @misc{KubatovaHamannKubatetal.2019, author = {Kubatova, Brankica and Hamann, Wolf-Rainer and Kubat, Jiri and Oskinova, Lida}, title = {3D Monte Carlo Radiative Transfer in Inhomogeneous Massive Star Winds}, series = {Radiative signatures from the cosmos}, volume = {519}, journal = {Radiative signatures from the cosmos}, publisher = {Astronomical soc pacific}, address = {San Fransisco}, isbn = {978-1-58381-925-8}, issn = {1050-3390}, pages = {209 -- 212}, year = {2019}, abstract = {Already for decades it has been known that the winds of massive stars are inhomogeneous (i.e. clumped). To properly model observed spectra of massive star winds it is necessary to incorporate the 3-D nature of clumping into radiative transfer calculations. In this paper we present our full 3-D Monte Carlo radiative transfer code for inhomogeneous expanding stellar winds. We use a set of parameters to describe dense as well as the rarefied wind components. At the same time, we account for non-monotonic velocity fields. We show how the 3-D density and velocity wind inhomogeneities strongly affect the resonance line formation. We also show how wind clumping can solve the discrepancy between P v and H alpha mass-loss rate diagnostics.}, language = {en} }