@phdthesis{GilMerinoRubio2003, author = {Gil-Merino Rubio, Rodrigo}, title = {Cosmology through gravitational lenses}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001030}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {In dieser Dissertation nutze ich den Gravitationslinseneffekt, um eine Reihe von kosmologischen Fragen zu untersuchen. Der Laufzeitunterschied des Gravitationslinsensystems HE1104-1805 wurde mit unterschiedlichen Methoden bestimmt. Zwischen den beiden Komponenten erhalte ich einen Unterschied von Delta_t(A-B) = -310 +-20 Tagen (2 sigma Konfidenzintervall). Außerdem nutze ich eine dreij{\"a}hrige Beobachtungskampagne, um den Doppelquasar Q0957+561 zu untersuchen. Die beobachteten Fluktuationen in den Differenzlichtkurven lassen sich durch Rauschen erkl{\"a}ren, ein Mikrogravitationslinseneffekt wird zur Erkl{\"a}rung nicht ben{\"o}tigt. Am Vierfachquasar Q2237+0305 untersuchte ich den Mikrogravitationslinseneffekt anhand der Daten der GLITP-Kollaboration (Okt. 1999-Feb. 2000). Durch die Abwesenheit eines starken Mikrogravitationslinsensignals konnte ich eine obere Grenze von v=600 km/s f f{\"u}r die effektive Transversalgeschwindigkeit der Linsengalaxie bestimmen (unter der Annahme von Mikrolinsen mit 0.1 Sonnenmassen). Im zweiten Teil der Arbeit untersuchte ich die Verteilung der Dunklen Materie in Galaxienhaufen. F{\"u}r den Galaxienhaufen Cl0024+1654 erhalte ich ein Masse-Leuchtkraft-Verh{\"a}ltnis von M/L = 200 M_sun/L_sun (innerhalb eines Radius von 3 Bogenminuten). Im Galaxienhaufen RBS380 finde ich eine relativ geringe R{\"o}ntgenleuchtkraft von L =2*10^(44) erg/s, obwohl im optischen eine große Anzahl von Galaxien gefunden wurde.}, language = {en} } @phdthesis{Kubas2005, author = {Kubas, Daniel}, title = {Applications of Galactic Microlensing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5179}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Subject of this work is the study of applications of the Galactic Microlensing effect, where the light of a distant star (source) is bend according to Einstein's theory of gravity by the gravitational field of intervening compact mass objects (lenses), creating multiple (however not resolvable) images of the source. Relative motion of source, observer and lens leads to a variation of deflection/magnification and thus to a time dependant observable brightness change (lightcurve), a so-called microlensing event, lasting weeks to months. The focus lies on the modeling of binary-lens events, which provide a unique tool to fully characterize the lens-source system and to detect extra-solar planets around the lens star. Making use of the ability of genetic algorithms to efficiently explore large and intricate parameter spaces in the quest for the global best solution, a modeling software (Tango) for binary lenses is developed, presented and applied to data sets from the PLANET microlensing campaign. For the event OGLE-2002-BLG-069 the 2nd ever lens mass measurement has been achieved, leading to a scenario, where a G5III Bulge giant at 9.4 kpc is lensed by an M-dwarf binary with total mass of M=0.51 solar masses at distance 2.9 kpc. Furthermore a method is presented to use the absence of planetary lightcurve signatures to constrain the abundance of extra-solar planets.}, subject = {Planeten}, language = {en} }