@misc{HofreiterPaijmansGoodchildetal.2015, author = {Hofreiter, Michael and Paijmans, Johanna L. A. and Goodchild, Helen and Speller, Camilla F. and Barlow, Axel and Gonzalez-Fortes, Gloria M. and Thomas, Jessica A. and Ludwig, Arne and Collins, Matthew J.}, title = {The future of ancient DNA}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {908}, issn = {1866-8372}, doi = {10.25932/publishup-43881}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-438816}, pages = {284 -- 295}, year = {2015}, abstract = {Technological innovations such as next generation sequencing and DNA hybridisation enrichment have resulted in multi-fold increases in both the quantity of ancient DNA sequence data and the time depth for DNA retrieval. To date, over 30 ancient genomes have been sequenced, moving from 0.7x coverage (mammoth) in 2008 to more than 50x coverage (Neanderthal) in 2014. Studies of rapid evolutionary changes, such as the evolution and spread of pathogens and the genetic responses of hosts, or the genetics of domestication and climatic adaptation, are developing swiftly and the importance of palaeogenomics for investigating evolutionary processes during the last million years is likely to increase considerably. However, these new datasets require new methods of data processing and analysis, as well as conceptual changes in interpreting the results. In this review we highlight important areas of future technical and conceptual progress and discuss research topics in the rapidly growing field of palaeogenomics.}, language = {en} } @misc{TaronLellBarlowetal.2018, author = {Taron, Ulrike H. and Lell, Moritz and Barlow, Axel and Paijmans, Johanna L. A.}, title = {Testing of Alignment Parameters for Ancient Samples}, series = {Genes}, journal = {Genes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409683}, pages = {12}, year = {2018}, abstract = {High-throughput sequence data retrieved from ancient or other degraded samples has led to unprecedented insights into the evolutionary history of many species, but the analysis of such sequences also poses specific computational challenges. The most commonly used approach involves mapping sequence reads to a reference genome. However, this process becomes increasingly challenging with an elevated genetic distance between target and reference or with the presence of contaminant sequences with high sequence similarity to the target species. The evaluation and testing of mapping efficiency and stringency are thus paramount for the reliable identification and analysis of ancient sequences. In this paper, we present 'TAPAS', (Testing of Alignment Parameters for Ancient Samples), a computational tool that enables the systematic testing of mapping tools for ancient data by simulating sequence data reflecting the properties of an ancient dataset and performing test runs using the mapping software and parameter settings of interest. We showcase TAPAS by using it to assess and improve mapping strategy for a degraded sample from a banded linsang (Prionodon linsang), for which no closely related reference is currently available. This enables a 1.8-fold increase of the number of mapped reads without sacrificing mapping specificity. The increase of mapped reads effectively reduces the need for additional sequencing, thus making more economical use of time, resources, and sample material.}, language = {en} } @misc{BaslerXenikoudakisWestburyetal.2017, author = {Basler, Nikolas and Xenikoudakis, Georgios and Westbury, Michael V. and Song, Lingfeng and Sheng, Guilian and Barlow, Axel}, title = {Reduction of the contaminant fraction of DNA obtained from an ancient giant panda bone}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {715}, issn = {1866-8372}, doi = {10.25932/publishup-42815}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-428151}, pages = {7}, year = {2017}, abstract = {Objective: A key challenge in ancient DNA research is massive microbial DNA contamination from the deposition site which accumulates post mortem in the study organism's remains. Two simple and cost-effective methods to enrich the relative endogenous fraction of DNA in ancient samples involve treatment of sample powder with either bleach or Proteinase K pre-digestion prior to DNA extraction. Both approaches have yielded promising but vary-ing results in other studies. Here, we contribute data on the performance of these methods using a comprehensive and systematic series of experiments applied to a single ancient bone fragment from a giant panda (Ailuropoda melanoleuca).Results: Bleach and pre-digestion treatments increased the endogenous DNA content up to ninefold. However, the absolute amount of DNA retrieved was dramatically reduced by all treatments. We also observed reduced DNA damage patterns in pre-treated libraries compared to untreated ones, resulting in longer mean fragment lengths and reduced thymine over-representation at fragment ends. Guanine-cytosine (GC) contents of both mapped and total reads are consistent between treatments and conform to general expectations, indicating no obvious biasing effect of the applied methods. Our results therefore confirm the value of bleach and pre-digestion as tools in palaeog-enomic studies, providing sufficient material is available.}, language = {en} } @misc{BarlowHartmannGonzalezetal.2020, author = {Barlow, Axel and Hartmann, Stefanie and Gonzalez, Javier and Hofreiter, Michael and Paijmans, Johanna L. A.}, title = {Consensify}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1033}, issn = {1866-8372}, doi = {10.25932/publishup-47252}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472521}, pages = {24}, year = {2020}, abstract = {A standard practise in palaeogenome analysis is the conversion of mapped short read data into pseudohaploid sequences, frequently by selecting a single high-quality nucleotide at random from the stack of mapped reads. This controls for biases due to differential sequencing coverage, but it does not control for differential rates and types of sequencing error, which are frequently large and variable in datasets obtained from ancient samples. These errors have the potential to distort phylogenetic and population clustering analyses, and to mislead tests of admixture using D statistics. We introduce Consensify, a method for generating pseudohaploid sequences, which controls for biases resulting from differential sequencing coverage while greatly reducing error rates. The error correction is derived directly from the data itself, without the requirement for additional genomic resources or simplifying assumptions such as contemporaneous sampling. For phylogenetic and population clustering analysis, we find that Consensify is less affected by artefacts than methods based on single read sampling. For D statistics, Consensify is more resistant to false positives and appears to be less affected by biases resulting from different laboratory protocols than other frequently used methods. Although Consensify is developed with palaeogenomic data in mind, it is applicable for any low to medium coverage short read datasets. We predict that Consensify will be a useful tool for future studies of palaeogenomes.}, language = {en} }