@article{PoxsonKaradyGabrielssonetal.2017, author = {Poxson, David J. and Karady, Michal and Gabrielsson, Roger and Alkattan, Aziz Y. and Gustavsson, Anna and Doyle, Siamsa M. and Robert, Stephanie and Ljung, Karin and Grebe, Markus and Simon, Daniel T. and Berggren, Magnus}, title = {Regulating plant physiology with organic electronics}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {114}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1617758114}, pages = {4597 -- 4602}, year = {2017}, abstract = {The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatio-temporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.}, language = {en} } @article{NaseriBalazadehMachensetal.2017, author = {Naseri, Gita and Balazadeh, Salma and Machens, Fabian and Kamranfar, Iman and Messerschmidt, Katrin and M{\"u}ller-R{\"o}ber, Bernd}, title = {Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae}, series = {ACS synthetic biology}, volume = {6}, journal = {ACS synthetic biology}, publisher = {American Chemical Society}, address = {Washington}, issn = {2161-5063}, doi = {10.1021/acssynbio.7b00094}, pages = {1742 -- 1756}, year = {2017}, abstract = {Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.}, language = {en} } @article{SmirnovaFernieSpahnetal.2017, author = {Smirnova, Julia and Fernie, Alisdair R. and Spahn, Christian M. T. and Steup, Martin}, title = {Photometric assay of maltose and maltose-forming enzyme activity by using 4-alpha-glucanotransferase (DPE2) from higher plants}, series = {Analytical biochemistry : methods in the biological sciences}, volume = {532}, journal = {Analytical biochemistry : methods in the biological sciences}, publisher = {Elsevier}, address = {San Diego}, issn = {0003-2697}, doi = {10.1016/j.ab.2017.05.026}, pages = {72 -- 82}, year = {2017}, abstract = {Maltose frequently occurs as intermediate of the central carbon metabolism of prokaryotic and eukaryotic cells. Various mutants possess elevated maltose levels. Maltose exists as two anomers, (alpha- and beta-form) which are rapidly interconverted without requiring enzyme-mediated catalysis. As maltose is often abundant together with other oligoglucans, selective quantification is essential. In this communication, we present a photometric maltose assay using 4-alpha-glucanotransferase (AtDPE2) from Arabidopsis thaliana. Under in vitro conditions, AtDPE2 utilizes maltose as glucosyl donor and glycogen as acceptor releasing the other hexosyl unit as free glucose which is photometrically quantified following enzymatic phosphorylation and oxidation. Under the conditions used, DPE2 does not noticeably react with other di- or oligosaccharides. Selectivity compares favorably with that of maltase frequently used in maltose assays. Reducing end interconversion of the two maltose anomers is in rapid equilibrium and, therefore, the novel assay measures total maltose contents. Furthermore, an AtDPE2-based continuous photometric assay is presented which allows to quantify beta-amylase activity and was found to be superior to a conventional test. Finally, the AtDPE2-based maltose assay was used to quantify leaf maltose contents of both Arabidopsis wild type and AtDPE2-deficient plants throughout the light-dark cycle. These data are presented together with assimilatory starch levels. (C) 2017 Published by Elsevier Inc.}, language = {en} } @article{AnnunziataApeltCarilloetal.2017, author = {Annunziata, Maria Grazia and Apelt, Federico and Carillo, Petronia and Krause, Ursula and Feil, Regina and Mengin, Virginie and Lauxmann, Martin A. and Koehl, Karin and Nikoloski, Zoran and Stitt, Mark and Lunn, John Edward}, title = {Getting back to nature: a reality check for experiments in controlled environments}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erx220}, pages = {4463 -- 4477}, year = {2017}, abstract = {Irradiance from sunlight changes in a sinusoidal manner during the day, with irregular fluctuations due to clouds, and light-dark shifts at dawn and dusk are gradual. Experiments in controlled environments typically expose plants to constant irradiance during the day and abrupt light-dark transitions. To compare the effects on metabolism of sunlight versus artificial light regimes, Arabidopsis thaliana plants were grown in a naturally illuminated greenhouse around the vernal equinox, and in controlled environment chambers with a 12-h photoperiod and either constant or sinusoidal light profiles, using either white fluorescent tubes or light-emitting diodes (LEDs) tuned to a sunlight-like spectrum as the light source. Rosettes were sampled throughout a 24-h diurnal cycle for metabolite analysis. The diurnal metabolite profiles revealed that carbon and nitrogen metabolism differed significantly between sunlight and artificial light conditions. The variability of sunlight within and between days could be a factor underlying these differences. Pairwise comparisons of the artificial light sources (fluorescent versus LED) or the light profiles (constant versus sinusoidal) showed much smaller differences. The data indicate that energy-efficient LED lighting is an acceptable alternative to fluorescent lights, but results obtained from plants grown with either type of artificial lighting might not be representative of natural conditions.}, language = {en} } @article{HansenMeyerFerrarietal.2017, author = {Hansen, Bjoern Oest and Meyer, Etienne H. and Ferrari, Camilla and Vaid, Neha and Movahedi, Sara and Vandepoele, Klaas and Nikoloski, Zoran and Mutwil, Marek}, title = {Ensemble gene function prediction database reveals genes important for complex I formation in Arabidopsis thaliana}, series = {New phytologist : international journal of plant science}, volume = {217}, journal = {New phytologist : international journal of plant science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.14921}, pages = {1521 -- 1534}, year = {2017}, abstract = {Recent advances in gene function prediction rely on ensemble approaches that integrate results from multiple inference methods to produce superior predictions. Yet, these developments remain largely unexplored in plants. We have explored and compared two methods to integrate 10 gene co-function networks for Arabidopsis thaliana and demonstrate how the integration of these networks produces more accurate gene function predictions for a larger fraction of genes with unknown function. These predictions were used to identify genes involved in mitochondrial complex I formation, and for five of them, we confirmed the predictions experimentally. The ensemble predictions are provided as a user-friendly online database, EnsembleNet. The methods presented here demonstrate that ensemble gene function prediction is a powerful method to boost prediction performance, whereas the EnsembleNet database provides a cutting-edge community tool to guide experimentalists.}, language = {en} } @article{SakurabaBuelbuelPiaoetal.2017, author = {Sakuraba, Yasuhito and B{\"u}lb{\"u}l, Selin and Piao, Weilan and Choi, Giltsu and Paek, Nam-Chon}, title = {Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways}, series = {The plant journal}, volume = {92}, journal = {The plant journal}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13747}, pages = {1106 -- 1120}, year = {2017}, language = {en} }