@article{StankiewiczMunozRitteretal.2011, author = {Stankiewicz, Jacek and Munoz, G. and Ritter, Oliver and Bedrosian, Paul A. and Ryberg, Trond and Weckmann, Ute and Weber, Michael H.}, title = {Shallow lithological structure across the Dead Sea Transform derived from geophysical experiments}, series = {Geochemistry, geophysics, geosystems}, volume = {12}, journal = {Geochemistry, geophysics, geosystems}, number = {3-4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2011GC003678}, pages = {15}, year = {2011}, abstract = {In the framework of the DEad SEa Rift Transect (DESERT) project a 150 km magnetotelluric profile consisting of 154 sites was carried out across the Dead Sea Transform. The resistivity model presented shows conductive structures in the western section of the study area terminating abruptly at the Arava Fault. For a more detailed analysis we performed a joint interpretation of the resistivity model with a P wave velocity model from a partially coincident seismic experiment. The technique used is a statistical correlation of resistivity and velocity values in parameter space. Regions of high probability of a coexisting pair of values for the two parameters are mapped back into the spatial domain, illustrating the geographical location of lithological classes. In this study, four regions of enhanced probability have been identified, and are remapped as four lithological classes. This technique confirms the Arava Fault marks the boundary of a highly conductive lithological class down to a depth of similar to 3 km. That the fault acts as an impermeable barrier to fluid flow is unusual for large fault zone, which often exhibit a fault zone characterized by high conductivity and low seismic velocity. At greater depths it is possible to resolve the Precambrian basement into two classes characterized by vastly different resistivity values but similar seismic velocities. The boundary between these classes is approximately coincident with the Al Quweira Fault, with higher resistivities observed east of the fault. This is interpreted as evidence for the original deformation along the DST originally taking place at the Al Quweira Fault, before being shifted to the Arava Fault.}, language = {en} } @article{JoziNajafabadiHaberlandLeBretonetal.2022, author = {Jozi Najafabadi, Azam and Haberland, Christian and Le Breton, Eline and Handy, Mark R. and Verwater, Vincent F. and Heit, Benjamin and Weber, Michael}, title = {Constraints on crustal structure in the vicinity of the adriatic indenter (European Alps) from Vp and Vp/Vs local earthquake tomography}, series = {Journal of geophysical research : Solid earth}, volume = {127}, journal = {Journal of geophysical research : Solid earth}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2021JB023160}, pages = {22}, year = {2022}, abstract = {In this study, 3-D models of P-wave velocity (Vp) and P-wave and S-wave ratio (Vp/Vs) of the crust and upper mantle in the Eastern and eastern Southern Alps (northern Italy and southern Austria) were calculated using local earthquake tomography (LET). The data set includes high-quality arrival times from well-constrained hypocenters observed by the dense, temporary seismic networks of the AlpArray AASN and SWATH-D. The resolution of the LET was checked by synthetic tests and analysis of the model resolution matrix. The small inter-station spacing (average of similar to 15 km within the SWATH-D network) allowed us to image crustal structure at unprecedented resolution across a key part of the Alps. The derived P velocity model revealed a highly heterogeneous crustal structure in the target area. One of the main findings is that the lower crust is thickened, forming a bulge at 30-50 km depth just south of and beneath the Periadriatic Fault and the Tauern Window. This indicates that the lower crust decoupled both from its mantle substratum as well as from its upper crust. The Moho, taken to be the iso-velocity contour of Vp = 7.25 km/s, agrees with the Moho depth from previous studies in the European and Adriatic forelands. It is shallower on the Adriatic side than on the European side. This is interpreted to indicate that the European Plate is subducted beneath the Adriatic Plate in the Eastern and eastern Southern Alps.}, language = {en} }