@phdthesis{Schlemm2022, author = {Schlemm, Tanja}, title = {The marine ice cliff instability of the Antarctic ice sheet}, doi = {10.25932/publishup-58633}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-586333}, school = {Universit{\"a}t Potsdam}, pages = {107}, year = {2022}, abstract = {The Antarctic ice sheet is the largest freshwater reservoir worldwide. If it were to melt completely, global sea levels would rise by about 58 m. Calculation of projections of the Antarctic contribution to sea level rise under global warming conditions is an ongoing effort which yields large ranges in predictions. Among the reasons for this are uncertainties related to the physics of ice sheet modeling. These uncertainties include two processes that could lead to runaway ice retreat: the Marine Ice Sheet Instability (MISI), which causes rapid grounding line retreat on retrograde bedrock, and the Marine Ice Cliff Instability (MICI), in which tall ice cliffs become unstable and calve off, exposing even taller ice cliffs. In my thesis, I investigated both marine instabilities (MISI and MICI) using the Parallel Ice Sheet Model (PISM), with a focus on MICI.}, language = {en} } @article{AlbrechtLevermann2014, author = {Albrecht, Torsten and Levermann, Anders}, title = {Spontaneous ice-front retreat caused by disintegration of adjacent ice shelf in Antarctica}, series = {Earth \& planetary science letters}, volume = {393}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2014.02.034}, pages = {26 -- 30}, year = {2014}, abstract = {Antarctic ice-discharge constitutes the largest uncertainty in future sea-level projections. Floating ice shelves, fringing most of Antarctica, exert retentive forces onto the ice flow. While abrupt ice-shelf retreat has been observed, it is generally considered a localized phenomenon. Here we show that the disintegration of an ice shelf may induce the spontaneous retreat of its neighbor. As an example, we reproduce the spontaneous but gradual retreat of the Larsen B ice front as observed after the disintegration of the adjacent Larsen A ice shelf. We show that the Larsen A collapse yields a change in spreading rate in Larsen B via their connecting ice channels and thereby causes a retreat of the ice front to its observed position of the year 2000, prior to its collapse. This mechanism might be particularly relevant for the role of East Antarctica and the Antarctic Peninsula in future sea level.}, language = {en} } @article{FerreroGodardPalmerietal.2018, author = {Ferrero, Silvio and Godard, Gaston and Palmeri, Rosaria and Wunder, Bernd and Cesare, Bernardo}, title = {Partial melting of ultramafic granulites from Dronning Maud Land, Antarctica}, series = {American mineralogist : an international journal of earth and planetary materials}, volume = {103}, journal = {American mineralogist : an international journal of earth and planetary materials}, number = {4}, publisher = {Mineralogical Society of America}, address = {Chantilly}, issn = {0003-004X}, doi = {10.2138/am-2018-6214}, pages = {610 -- 622}, year = {2018}, abstract = {In the Pan-African belt of the Dronning Maud Land, Antarctica, crystallized melt inclusions (nanogranitoids) occur in garnet from ultramafic granulites. The granulites contain the peak assemblage pargasite+garnet+clinopyroxene with rare relict orthopyroxene and biotite, and retrograde symplectites at contacts between garnet and amphibole. Garnet contains two generations of melt inclusions. Type 1 inclusions, interpreted as primary, are isolated, < 10 mu m in size, and generally have negative crystal shapes. They contain kokchetavite, kumdykolite, and phlogopite, with quartz and zoisite as minor phases, and undevitrified glass was identified in one inclusion. Type 2 inclusions are < 30 mu m in size, secondary, and contain amphibole, feldspars, and zoisite. Type 2 inclusions appear to be the crystallization products of a melt that coexisted with an immiscible CO2-rich fluid. The nanogranitoids were re-homogenized after heating in a piston-cylinder in a series of four experiments to investigate their composition. The conditions ranged between 900 and 950 degrees C at 1.5-2.4 GPa. Type 1 inclusions are trachytic and ultrapotassic, whereas type 2 melts are dacitic to rhyolitic. Thermodynamic modeling of the ultramafic composition in the MnNCKFMASHTO system shows that anatexis occurred at the end of the prograde P-T path, between the solidus (at ca. 860 degrees C-1.4 GPa) and the peak conditions (at ca. 960 degrees C-1.7 GPa). The model melt composition is felsic and similar to that of type 1 inclusions, particularly when the melting degree is low (< 1 mol\%), close to the solidus. However the modeling fails to reproduce the highly potassic signature of the melt and its low H2O content. The combination of petrology, melt inclusion study, and thermodynamic modeling supports the interpretation that melt was produced by anatexis of the ultramafic boudins near peak P-T conditions, and that type 1 inclusions contain the anatectic melt that was present during garnet growth. The felsic, ultrapotassic composition of the primary anatectic melts is compatible with low melting degrees in the presence of biotite and amphibole as reactants.}, language = {en} } @phdthesis{Muench2018, author = {M{\"u}nch, Thomas}, title = {Interpretation of temperature signals from ice cores}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-414963}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 197}, year = {2018}, abstract = {Earth's climate varies continuously across space and time, but humankind has witnessed only a small snapshot of its entire history, and instrumentally documented it for a mere 200 years. Our knowledge of past climate changes is therefore almost exclusively based on indirect proxy data, i.e. on indicators which are sensitive to changes in climatic variables and stored in environmental archives. Extracting the data from these archives allows retrieval of the information from earlier times. Obtaining accurate proxy information is a key means to test model predictions of the past climate, and only after such validation can the models be used to reliably forecast future changes in our warming world. The polar ice sheets of Greenland and Antarctica are one major climate archive, which record information about local air temperatures by means of the isotopic composition of the water molecules embedded in the ice. However, this temperature proxy is, as any indirect climate data, not a perfect recorder of past climatic variations. Apart from local air temperatures, a multitude of other processes affect the mean and variability of the isotopic data, which hinders their direct interpretation in terms of climate variations. This applies especially to regions with little annual accumulation of snow, such as the Antarctic Plateau. While these areas in principle allow for the extraction of isotope records reaching far back in time, a strong corruption of the temperature signal originally encoded in the isotopic data of the snow is expected. This dissertation uses observational isotope data from Antarctica, focussing especially on the East Antarctic low-accumulation area around the Kohnen Station ice-core drilling site, together with statistical and physical methods, to improve our understanding of the spatial and temporal isotope variability across different scales, and thus to enhance the applicability of the proxy for estimating past temperature variability. The presented results lead to a quantitative explanation of the local-scale (1-500 m) spatial variability in the form of a statistical noise model, and reveal the main source of the temporal variability to be the mixture of a climatic seasonal cycle in temperature and the effect of diffusional smoothing acting on temporally uncorrelated noise. These findings put significant limits on the representativity of single isotope records in terms of local air temperature, and impact the interpretation of apparent cyclicalities in the records. Furthermore, to extend the analyses to larger scales, the timescale-dependency of observed Holocene isotope variability is studied. This offers a deeper understanding of the nature of the variations, and is crucial for unravelling the embedded true temperature variability over a wide range of timescales.}, language = {en} } @article{JoseClementeMorenoOmranianSaezetal.2019, author = {Jose Clemente-Moreno, Maria and Omranian, Nooshin and Saez, Patricia and Maria Figueroa, Carlos and Del-Saz, Nestor and Elso, Mhartyn and Poblete, Leticia and Orf, Isabel and Cuadros-Inostroza, Alvaro and Cavieres, Lohengrin and Bravo, Leon and Fernie, Alisdair R. and Ribas-Carbo, Miquel and Flexas, Jaume and Nikoloski, Zoran and Brotman, Yariv and Gago, Jorge}, title = {Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis}, series = {New phytologist : international journal of plant science}, volume = {225}, journal = {New phytologist : international journal of plant science}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0028-646X}, doi = {10.1111/nph.16167}, pages = {754 -- 768}, year = {2019}, abstract = {Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23 degrees C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88\%) but not in respiration (sustaining rates of 3.0-4.2 mu mol CO2 m(-2) s(-1)) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature.}, language = {en} } @phdthesis{Bajerski2013, author = {Bajerski, Felizitas}, title = {Bacterial communities in glacier forefields of the Larsemann Hills, East Antarctica : structure, development \& adaptation}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67424}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Antarctic glacier forfields are extreme environments and pioneer sites for ecological succession. The Antarctic continent shows microbial community development as a natural laboratory because of its special environment, geographic isolation and little anthropogenic influence. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats and new terrain is becoming exposed to soil formation and accessible for microbial colonisation. This study aims to understand the structure and development of glacier forefield bacterial communities, especially how soil parameters impact the microorganisms and how those are adapted to the extreme conditions of the habitat. To this effect, a combination of cultivation experiments, molecular, geophysical and geochemical analysis was applied to examine two glacier forfields of the Larsemann Hills, East Antarctica. Culture-independent molecular tools such as terminal restriction length polymorphism (T-RFLP), clone libraries and quantitative real-time PCR (qPCR) were used to determine bacterial diversity and distribution. Cultivation of yet unknown species was carried out to get insights in the physiology and adaptation of the microorganisms. Adaptation strategies of the microorganisms were studied by determining changes of the cell membrane phospholipid fatty acid (PLFA) inventory of an isolated bacterium in response to temperature and pH fluctuations and by measuring enzyme activity at low temperature in environmental soil samples. The two studied glacier forefields are extreme habitats characterised by low temperatures, low water availability and small oligotrophic nutrient pools and represent sites of different bacterial succession in relation to soil parameters. The investigated sites showed microbial succession at an early step of soil formation near the ice tongue in comparison to closely located but rather older and more developed soil from the forefield. At the early step the succession is influenced by a deglaciation-dependent areal shift of soil parameters followed by a variable and prevalently depth-related distribution of the soil parameters that is driven by the extreme Antarctic conditions. The dominant taxa in the glacier forefields are Actinobacteria, Acidobacteria, Proteobacteria, Bacteroidetes, Cyanobacteria and Chloroflexi. The connection of soil characteristics with bacterial community structure showed that soil parameter and soil formation along the glacier forefield influence the distribution of certain phyla. In the early step of succession the relative undifferentiated bacterial diversity reflects the undifferentiated soil development and has a high potential to shift according to past and present environmental conditions. With progressing development environmental constraints such as water or carbon limitation have a greater influence. Adapting the culturing conditions to the cold and oligotrophic environment, the number of culturable heterotrophic bacteria reached up to 108 colony forming units per gram soil and 148 isolates were obtained. Two new psychrotolerant bacteria, Herbaspirillum psychrotolerans PB1T and Chryseobacterium frigidisoli PB4T, were characterised in detail and described as novel species in the family of Oxalobacteraceae and Flavobacteriaceae, respectively. The isolates are able to grow at low temperatures tolerating temperature fluctuations and they are not specialised to a certain substrate, therefore they are well-adapted to the cold and oligotrophic environment. The adaptation strategies of the microorganisms were analysed in environmental samples and cultures focussing on extracellular enzyme activity at low temperature and PLFA analyses. Extracellular phosphatases (pH 11 and pH 6.5), β-glucosidase, invertase and urease activity were detected in the glacier forefield soils at low temperature (14°C) catalysing the conversion of various compounds providing necessary substrates and may further play a role in the soil formation and total carbon turnover of the habitat. The PLFA analysis of the newly isolated species C. frigidisoli showed that the cold-adapted strain develops different strategies to maintain the cell membrane function under changing environmental conditions by altering the PLFA inventory at different temperatures and pH values. A newly discovered fatty acid, which was not found in any other microorganism so far, significantly increased at decreasing temperature and low pH and thus plays an important role in the adaption of C. frigidisoli. This work gives insights into the diversity, distribution and adaptation mechanisms of microbial communities in oligotrophic cold-affected soils and shows that Antarctic glacier forefields are suitable model systems to study bacterial colonisation in connection to soil formation.}, language = {en} } @article{IlicicWoodhouseKarstenetal.2022, author = {Ilicic, Doris and Woodhouse, Jason and Karsten, Ulf and Zimmermann, Jonas and Wichard, Thomas and Quartino, Maria Liliana and Campana, Gabriela Laura and Livenets, Alexandra and Van den Wyngaert, Silke and Grossart, Hans-Peter}, title = {Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones}, series = {Frontiers in microbiology}, journal = {Frontiers in microbiology}, number = {13}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2022.805694}, pages = {12}, year = {2022}, abstract = {Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.}, language = {en} } @misc{IlicicWoodhouseKarstenetal.2023, author = {Ilicic, Doris and Woodhouse, Jason and Karsten, Ulf and Zimmermann, Jonas and Wichard, Thomas and Quartino, Maria Liliana and Campana, Gabriela Laura and Livenets, Alexandra and Van den Wyngaert, Silke and Grossart, Hans-Peter}, title = {Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1290}, issn = {1866-8372}, doi = {10.25932/publishup-57289}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-572895}, pages = {14}, year = {2023}, abstract = {Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota.}, language = {en} }